Murmurhash3的Javascript实现,给出与Murmurhash3相同的结果.cpp Python的sklearn中可用的transform使用Murmurhash3



(我很抱歉我不允许添加许多url来帮助我更好地解释我在这篇文章中的问题,因为我是StackOverflow的新手,我的StackOverflow帐户具有非常低的特权)。

谁能告诉我如何修改murmurhash3.js(下面),使其产生与MurmurHash3.cpp(下面)相同的哈希值?我根据需要为MurmurHash3.cpp提供了一个简单的python代码"simple_python_wrapper.py"。如果您安装了sklearn, simple_python_wrapper.py应该可以在您的计算机上运行。

在我的一个机器学习项目中,我大量使用Murmurhash3.cpp(如下所示),同时使用来自sklearn (Python机器学习库)的transform: from sklearn.feature_extraction._hashing import transformtransform在sklearn的实现/导入树中使用Murmurhash3.cpp

hash %(2^18){即基于MurmurHash3.cpp

的"哈希模数2^18"}
"hello" gives 260679
"there" gives 45525

hash %(2^18){即基于murmurhash3.js的"哈希模数2^18"}

"hello" gives -58999
"there" gives 65775

murmurhash3.js

/*
 *  The MurmurHash3 algorithm was created by Austin Appleby.  This JavaScript port was authored
 *  by whitequark (based on Java port by Yonik Seeley) and is placed into the public domain.
 *  The author hereby disclaims copyright to this source code.
 *
 *  This produces exactly the same hash values as the final C++ version of MurmurHash3 and
 *  is thus suitable for producing the same hash values across platforms.
 *
 *  There are two versions of this hash implementation. First interprets the string as a
 *  sequence of bytes, ignoring most significant byte of each codepoint. The second one
 *  interprets the string as a UTF-16 codepoint sequence, and appends each 16-bit codepoint
 *  to the hash independently. The latter mode was not written to be compatible with
 *  any other implementation, but it should offer better performance for JavaScript-only
 *  applications.
 *
 *  See http://github.com/whitequark/murmurhash3-js for future updates to this file.
 */
var MurmurHash3 = {
    mul32: function(m, n) {
        var nlo = n & 0xffff;
        var nhi = n - nlo;
        return ((nhi * m | 0) + (nlo * m | 0)) | 0;
    },
    hashBytes: function(data, len, seed) {
        var c1 = 0xcc9e2d51, c2 = 0x1b873593;
        var h1 = seed;
        var roundedEnd = len & ~0x3;
        for (var i = 0; i < roundedEnd; i += 4) {
            var k1 = (data.charCodeAt(i)     & 0xff)        |
                ((data.charCodeAt(i + 1) & 0xff) << 8)  |
                ((data.charCodeAt(i + 2) & 0xff) << 16) |
                ((data.charCodeAt(i + 3) & 0xff) << 24);
            k1 = this.mul32(k1, c1);
            k1 = ((k1 & 0x1ffff) << 15) | (k1 >>> 17);  // ROTL32(k1,15);
            k1 = this.mul32(k1, c2);
            h1 ^= k1;
            h1 = ((h1 & 0x7ffff) << 13) | (h1 >>> 19);  // ROTL32(h1,13);
            h1 = (h1 * 5 + 0xe6546b64) | 0;
        }
        k1 = 0;
        switch(len % 4) {
            case 3:
                k1 = (data.charCodeAt(roundedEnd + 2) & 0xff) << 16;
                // fallthrough
            case 2:
                k1 |= (data.charCodeAt(roundedEnd + 1) & 0xff) << 8;
                // fallthrough
            case 1:
                k1 |= (data.charCodeAt(roundedEnd) & 0xff);
                k1 = this.mul32(k1, c1);
                k1 = ((k1 & 0x1ffff) << 15) | (k1 >>> 17);  // ROTL32(k1,15);
                k1 = this.mul32(k1, c2);
                h1 ^= k1;
        }
        // finalization
        h1 ^= len;
        // fmix(h1);
        h1 ^= h1 >>> 16;
        h1  = this.mul32(h1, 0x85ebca6b);
        h1 ^= h1 >>> 13;
        h1  = this.mul32(h1, 0xc2b2ae35);
        h1 ^= h1 >>> 16;
        return h1;
    },
    hashString: function(data, len, seed) {
        var c1 = 0xcc9e2d51, c2 = 0x1b873593;
        var h1 = seed;
        var roundedEnd = len & ~0x1;
        for (var i = 0; i < roundedEnd; i += 2) {
            var k1 = data.charCodeAt(i) | (data.charCodeAt(i + 1) << 16);
            k1 = this.mul32(k1, c1);
            k1 = ((k1 & 0x1ffff) << 15) | (k1 >>> 17);  // ROTL32(k1,15);
            k1 = this.mul32(k1, c2);
            h1 ^= k1;
            h1 = ((h1 & 0x7ffff) << 13) | (h1 >>> 19);  // ROTL32(h1,13);
            h1 = (h1 * 5 + 0xe6546b64) | 0;
        }
        if((len % 2) == 1) {
            k1 = data.charCodeAt(roundedEnd);
            k1 = this.mul32(k1, c1);
            k1 = ((k1 & 0x1ffff) << 15) | (k1 >>> 17);  // ROTL32(k1,15);
            k1 = this.mul32(k1, c2);
            h1 ^= k1;
        }
        // finalization
        h1 ^= (len << 1);
        // fmix(h1);
        h1 ^= h1 >>> 16;
        h1  = this.mul32(h1, 0x85ebca6b);
        h1 ^= h1 >>> 13;
        h1  = this.mul32(h1, 0xc2b2ae35);
        h1 ^= h1 >>> 16;
        return h1;
    }
};
if(typeof module !== "undefined" && typeof module.exports !== "undefined") {
    module.exports = MurmurHash3;
}

这是我用来测试Javascript的HTML代码+ Javascript

https://jsbin.com/gicomikike/edit?html、js、输出

<html>
<head>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.0/jquery.min.js"></script>
<script src="murmurhash3.js"></script>
<script>
function call_murmurhash3_32_gc () {
    var key = $('textarea#textarea1').val();
    var seed = 0;
    var hash = MurmurHash3.hashString (key, key.length, seed);
    $('div#div1').text(hash);
    }
</script>
</head>
<body>
Body
<form>
    <textarea rows="4" cols="50" id=textarea1></textarea>
    <br>
    <input type="button" value="Hash" onclick="call_murmurhash3_32_gc()"/>
</form>

<div id=div1>
</div>
</body>
</html>

simple_python_wrapper.py

这使用了sklearn的导入树中的MurmurHash3.cpp。

from sklearn.feature_extraction._hashing import transform 
import numpy as np
def getHashIndex (words):
    raw_X = words
    n_features = 262144 # 2 ** 18
    dtype = np.float32 #np.float64
    #transform(raw_X, Py_ssize_t n_features, dtype)
    indices_a, indptr, values = transform (raw_X, n_features, dtype)
    return indices_a 

words = [[("hello", 1), ("there", 1)]] 
print getHashIndex (words)

输出
[260679  45525]

MurmurHash3.cpp

I copied this code is available here 
https://github.com/karanlyons/murmurHash3.js/blob/master/murmurHash3.js
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
// Note - The x86 and x64 versions do _not_ produce the same results, as the
// algorithms are optimized for their respective platforms. You can still
// compile and run any of them on any platform, but your performance with the
// non-native version will be less than optimal.
#include "MurmurHash3.h"
//-----------------------------------------------------------------------------
// Platform-specific functions and macros
// Microsoft Visual Studio
#if defined(_MSC_VER)
#define FORCE_INLINE    __forceinline
#include <stdlib.h>
#define ROTL32(x,y) _rotl(x,y)
#define ROTL64(x,y) _rotl64(x,y)
#define BIG_CONSTANT(x) (x)
// Other compilers
#else   // defined(_MSC_VER)
#if defined(GNUC) && ((GNUC > 4) || (GNUC == 4 && GNUC_MINOR >= 4))
/* gcc version >= 4.4 4.1 = RHEL 5, 4.4 = RHEL 6.
 * Don't inline for RHEL 5 gcc which is 4.1 */
#define FORCE_INLINE attribute((always_inline))
#else
#define FORCE_INLINE
#endif

inline uint32_t rotl32 ( uint32_t x, int8_t r )
{
  return (x << r) | (x >> (32 - r));
}
inline uint64_t rotl64 ( uint64_t x, int8_t r )
{
  return (x << r) | (x >> (64 - r));
}
#define ROTL32(x,y) rotl32(x,y)
#define ROTL64(x,y) rotl64(x,y)
#define BIG_CONSTANT(x) (x##LLU)
#endif // !defined(_MSC_VER)
//-----------------------------------------------------------------------------
// Block read - if your platform needs to do endian-swapping or can only
// handle aligned reads, do the conversion here
FORCE_INLINE uint32_t getblock ( const uint32_t * p, int i )
{
  return p[i];
}
FORCE_INLINE uint64_t getblock ( const uint64_t * p, int i )
{
  return p[i];
}
//-----------------------------------------------------------------------------
// Finalization mix - force all bits of a hash block to avalanche
FORCE_INLINE uint32_t fmix ( uint32_t h )
{
  h ^= h >> 16;
  h *= 0x85ebca6b;
  h ^= h >> 13;
  h *= 0xc2b2ae35;
  h ^= h >> 16;
  return h;
}
//----------
FORCE_INLINE uint64_t fmix ( uint64_t k )
{
  k ^= k >> 33;
  k *= BIG_CONSTANT(0xff51afd7ed558ccd);
  k ^= k >> 33;
  k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
  k ^= k >> 33;
  return k;
}
//-----------------------------------------------------------------------------
void MurmurHash3_x86_32 ( const void * key, int len,
                          uint32_t seed, void * out )
{
  const uint8_t * data = (const uint8_t*)key;
  const int nblocks = len / 4;
  uint32_t h1 = seed;
  uint32_t c1 = 0xcc9e2d51;
  uint32_t c2 = 0x1b873593;
  //----------
  // body
  const uint32_t * blocks = (const uint32_t *)(data + nblocks*4);
  for(int i = -nblocks; i; i++)
  {
    uint32_t k1 = getblock(blocks,i);
    k1 *= c1;
    k1 = ROTL32(k1,15);
    k1 *= c2;
    h1 ^= k1;
    h1 = ROTL32(h1,13);
    h1 = h1*5+0xe6546b64;
  }
  //----------
  // tail
  const uint8_t * tail = (const uint8_t*)(data + nblocks*4);
  uint32_t k1 = 0;
  switch(len & 3)
  {
  case 3: k1 ^= tail[2] << 16;
  case 2: k1 ^= tail[1] << 8;
  case 1: k1 ^= tail[0];
          k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
  };
  //----------
  // finalization
  h1 ^= len;
  h1 = fmix(h1);
  *(uint32_t*)out = h1;
}
//-----------------------------------------------------------------------------
void MurmurHash3_x86_128 ( const void * key, const int len,
                           uint32_t seed, void * out )
{
  const uint8_t * data = (const uint8_t*)key;
  const int nblocks = len / 16;
  uint32_t h1 = seed;
  uint32_t h2 = seed;
  uint32_t h3 = seed;
  uint32_t h4 = seed;
  uint32_t c1 = 0x239b961b;
  uint32_t c2 = 0xab0e9789;
  uint32_t c3 = 0x38b34ae5;
  uint32_t c4 = 0xa1e38b93;
  //----------
  // body
  const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
  for(int i = -nblocks; i; i++)
  {
    uint32_t k1 = getblock(blocks,i*4+0);
    uint32_t k2 = getblock(blocks,i*4+1);
    uint32_t k3 = getblock(blocks,i*4+2);
    uint32_t k4 = getblock(blocks,i*4+3);
    k1 *= c1; k1  = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
    h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
    k2 *= c2; k2  = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
    h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
    k3 *= c3; k3  = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
    h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
    k4 *= c4; k4  = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
    h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
  }
  //----------
  // tail
  const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
  uint32_t k1 = 0;
  uint32_t k2 = 0;
  uint32_t k3 = 0;
  uint32_t k4 = 0;
  switch(len & 15)
  {
  case 15: k4 ^= tail[14] << 16;
  case 14: k4 ^= tail[13] << 8;
  case 13: k4 ^= tail[12] << 0;
           k4 *= c4; k4  = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
  case 12: k3 ^= tail[11] << 24;
  case 11: k3 ^= tail[10] << 16;
  case 10: k3 ^= tail[ 9] << 8;
  case  9: k3 ^= tail[ 8] << 0;
           k3 *= c3; k3  = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
  case  8: k2 ^= tail[ 7] << 24;
  case  7: k2 ^= tail[ 6] << 16;
  case  6: k2 ^= tail[ 5] << 8;
  case  5: k2 ^= tail[ 4] << 0;
           k2 *= c2; k2  = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
  case  4: k1 ^= tail[ 3] << 24;
  case  3: k1 ^= tail[ 2] << 16;
  case  2: k1 ^= tail[ 1] << 8;
  case  1: k1 ^= tail[ 0] << 0;
           k1 *= c1; k1  = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
  };
  //----------
  // finalization
  h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
  h1 += h2; h1 += h3; h1 += h4;
  h2 += h1; h3 += h1; h4 += h1;
  h1 = fmix(h1);
  h2 = fmix(h2);
  h3 = fmix(h3);
  h4 = fmix(h4);
  h1 += h2; h1 += h3; h1 += h4;
  h2 += h1; h3 += h1; h4 += h1;
  ((uint32_t*)out)[0] = h1;
  ((uint32_t*)out)[1] = h2;
  ((uint32_t*)out)[2] = h3;
  ((uint32_t*)out)[3] = h4;
}
//-----------------------------------------------------------------------------
void MurmurHash3_x64_128 ( const void * key, const int len,
                           const uint32_t seed, void * out )
{
  const uint8_t * data = (const uint8_t*)key;
  const int nblocks = len / 16;
  uint64_t h1 = seed;
  uint64_t h2 = seed;
  uint64_t c1 = BIG_CONSTANT(0x87c37b91114253d5);
  uint64_t c2 = BIG_CONSTANT(0x4cf5ad432745937f);
  //----------
  // body
  const uint64_t * blocks = (const uint64_t *)(data);
  for(int i = 0; i < nblocks; i++)
  {
    uint64_t k1 = getblock(blocks,i*2+0);
    uint64_t k2 = getblock(blocks,i*2+1);
    k1 *= c1; k1  = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
    h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
    k2 *= c2; k2  = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
    h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
  }
  //----------
  // tail
  const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
  uint64_t k1 = 0;
  uint64_t k2 = 0;
  switch(len & 15)
  {
  case 15: k2 ^= uint64_t(tail[14]) << 48;
  case 14: k2 ^= uint64_t(tail[13]) << 40;
  case 13: k2 ^= uint64_t(tail[12]) << 32;
  case 12: k2 ^= uint64_t(tail[11]) << 24;
  case 11: k2 ^= uint64_t(tail[10]) << 16;
  case 10: k2 ^= uint64_t(tail[ 9]) << 8;
  case  9: k2 ^= uint64_t(tail[ 8]) << 0;
           k2 *= c2; k2  = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
  case  8: k1 ^= uint64_t(tail[ 7]) << 56;
  case  7: k1 ^= uint64_t(tail[ 6]) << 48;
  case  6: k1 ^= uint64_t(tail[ 5]) << 40;
  case  5: k1 ^= uint64_t(tail[ 4]) << 32;
  case  4: k1 ^= uint64_t(tail[ 3]) << 24;
  case  3: k1 ^= uint64_t(tail[ 2]) << 16;
  case  2: k1 ^= uint64_t(tail[ 1]) << 8;
  case  1: k1 ^= uint64_t(tail[ 0]) << 0;
           k1 *= c1; k1  = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
  };
  //----------
  // finalization
  h1 ^= len; h2 ^= len;
  h1 += h2;
  h2 += h1;
  h1 = fmix(h1);
  h2 = fmix(h2);
  h1 += h2;
  h2 += h1;
  ((uint64_t*)out)[0] = h1;
  ((uint64_t*)out)[1] = h2;
}
//-----------------------------------------------------------------------------

让我再解释一下。

from sklearn.feature_extraction._hashing import transform使用此代码https://github.com/scikit-learn/scikit-learn/blob/412996f09b6756752dfd3736c306d46fca8f1aa1/sklearn/feature_extraction/_hashing.pyx哪个用到了这个from sklearn.utils.murmurhash cimport murmurhash3_bytes_s32反过来又利用了这个https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/murmurhash.pyx哪个是建立在这个基础上的https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/src/MurmurHash3.cpp。所以,MurmurHash3.cpp非常重要。我需要这个确切的MurmurHash3.cpp的Javascript版本,这样Javascript代码和MurmurHash3.cpp将产生相同的结果

我需要这个,因为我想让我的一些机器学习工具可以在线使用,哈希需要在客户端的web浏览器上完成。

到目前为止,我已经找到了一些MurmurHash3的Javascript实现。然而,murmurhash3.js https://github.com/whitequark/murmurhash3-js/blob/master/murmurhash3.js似乎最接近(在代码结构方面)由sklearn使用的MurmurHash3.cpp。但是我仍然没有从它们两个得到相同的哈希值。

谁能告诉我如何修改murmurhash3.js(上面),使其产生与MurmurHash3.cpp(上面)相同的哈希值?

根据@ChristopherOicles的建议,我改变了我的Javascript代码(我的HTML代码的标题)使用hashBytes而不是hashString,如下所示。我还注意到,为了我的目的,我需要将hashBytes的返回值更改为其绝对值(所以我这样做了)。这些解决了我的问题,现在我从Python/c++代码和Javascript代码中得到相同的哈希值。

在我的HTML文件中修改Javascript函数

<script>
function call_murmurhash3_32_gc () {
    var key = $('textarea#textarea1').val();
    var seed = 0;
    var hash = MurmurHash3.hashBytes (key, key.length, seed);
    $('div#div1').text(Math.abs (hash) % 262144);
    }
</script>

我的完整解决方案在这里https://jsbin.com/qilokot/edit?html,js,output.

再次感谢Christopher Oicles和所有试图以某种方式帮助我的人。

我迟到了,但我现在才遇到这个问题。

如果字符串不是由常规ASCII字符组成,则您使用的实现将产生与参考实现不同的结果。这是因为它使用charCodeAt和字节掩码从输入字符串中获取需要散列的字节。如果字符串包含任何其他字符,除非您在其他平台上做完全相同的事情来解码字符串,否则结果将出现分歧。

我做了一个MurmurHash3js的分支,它使用字节作为输入而不是字符串。下面是它的用法:

npm install murmurhash3js-revisited
在你的js文件中,你可以这样做:
import MurmurHash3 from 'murmurhash3js-revisited';
const str = "My hovercraft is full of eels.";
// get utf-8 bytes
const bytes = new TextEncoder().encode(str);
MurmurHash3.x86.hash32(bytes);
// output: 2953494853
MurmurHash3.x86.hash128(bytes);
// output: "e3a186aee169ba6c6a8bd9343c68fa9c"
MurmurHash3.x64.hash128(bytes);
// output: "03e5e14d358c16d1e5ae86df7ed5cfcb"
MurmurHash3.x86.hash32("any string");
// output: undefined
// (x86.hash128 and x64.hash128 also return undefined)

您可以在我的库文档中阅读有关性能注意事项和尝试不同JavaScript实现之间的交互比较。

相关内容

  • 没有找到相关文章