语义操作未禁用属性兼容性



我有一个语法规则,如下所示:

rule<Iterator, utree()> expr, factor;
expr =
    (
       +(
           (
              toks.symbol // toks.symbol attribute type is an std::string
              [
                 // I'm trying to force the attribute type to be utree
                 _val = construct<utree::list_type>()
                 // some code here
              ]
           |  (
                 factor >>
                +(
                    // the 3 tokens here have unsigned long attribute
                    toks.arrow >> factor
                 |  toks.squiggleArrow >> factor
                 |  toks.dot >> factor
                 )
              )
              [
                 // I'm trying to force the attribute type to be utree
                 _val = construct<utree::list_type>()
                 // some code here
              ]
           ) >> toks.assign // toks.assign is token_def<omit>
        ) >> factor
     ) [ _val = ternary(_1, _2) ]
   ;

据我所知:

http://boost-spirit.com/home/articles/attribute_handling/attribute-propagation-and-attribute-compatibility/

在这种情况下,应该禁用属性兼容性,因为语义行动就在那里。尽管如此,我在里面看到了一个编译错误ternary(),表明_1的类型不是像I那样的向量会期待,但事实确实如此:

vector<
    variant<std::string,
            fusion::vector2<utree,
                            fusion::vector2<long unsigned int, utree>
                           >
           >
       >

这意味着,出于某种原因,语义动作没有发挥作用!

有什么线索表明为什么会发生这种情况吗?

注意:我在这里粘贴了一个最小化的例子来显示问题:

http://pastebin.com/rgiy2QBW

谢谢!

编译器抱怨的赋值在ternaryImpl::operator()主体内部,这意味着,显然,语义操作确实启动了!

现在,尽管SA阻止自动属性传播是正确的(除非运算符%=用于规则分配),但这并不意味着基本语法分析器暴露的类型会神奇地改变。

您在问题中列出的类型准确地反映了解析器表达式/运算符将返回的内容:

  • 或者(|)解析为变体
  • 序列(>>)解析为fusion::vector2<...>

现在,这里是我的简单、最小的更改,它将使这个编译。确切地说,诀窍是通过将具有显式属性类型的子规则拆分为,使属性分配对您有效。这允许Spirit为您进行属性转换。

struct Parser: public qi::grammar<Iterator, utree()>
{
    template <typename Tokens>
        Parser(const Tokens &toks):
            Parser::base_type(expression)
    {
        chain = +(
            (
               toks.symbol
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            |  (
                  factor >>
                 +(
                     toks.arrow >> factor
                  |  toks.dot >> factor
                  )
               )
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            ) >> toks.assign
         );
        expression = factor
            | (chain >> factor) [ _val = ternary(_1, _2) ]
            ;
    }
   rule<Iterator, utree::list_type()> chain;
   rule<Iterator, utree()> expression, factor, test;
};

注意如果您愿意,您应该能够在没有额外规则定义的情况下执行同样的操作(例如使用qi::attr_cast<>qi::as<>),但我怀疑它是否可读/可维护

PS与使用SA的calc_utree_ast.cpp版本相比,calc_utree_naive.cpp必然意味着更明确的规则属性类型。

以下是完整的编译版本,注释中有一些内联注释:

// #define BOOST_SPIRIT_USE_PHOENIX_V3
// #define BOOST_RESULT_OF_USE_DECLTYPE
#include <algorithm>
#include <string>
#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/support_utree.hpp>
#include <boost/spirit/include/phoenix_function.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
namespace lex    = boost::spirit::lex;
namespace qi     = boost::spirit::qi;
namespace spirit = boost::spirit;
namespace phx    = boost::phoenix;
using lex::token_def;
using qi::rule;
using qi::_1;
using qi::_2;
using qi::_val;
using spirit::utree;
using phx::construct;
// base iterator type
typedef std::string::iterator BaseIteratorT;
// token type
typedef lex::lexertl::token<BaseIteratorT, boost::mpl::vector</*double, int, */std::string> > TokenT;
// lexer type
typedef lex::lexertl::actor_lexer<TokenT> LexerT;
template <typename LexerT>
struct Tokens: public lex::lexer<LexerT>
{
   Tokens()
   {
      using lex::_pass;
      using lex::pass_flags;
      // literals
      symbol = "[a-zA-Z_?](\w|\?)*|@(\w|\?)+";
      arrow  = "->";
      dot    = '.';
      assign = "=";
      // literal rules
      this->self += symbol;
      this->self += arrow;
      this->self += dot;
      this->self += assign;
   }
   ~Tokens() {}
   // literal tokens
   token_def<std::string> symbol;
   token_def<> arrow, dot; // HINT: lex::omit here? 
   /*
    * ^ Otherwise, expect these to be all exposed as Qi attributes as well, so
    * _1, _2, _3, _4 a bit more than you'd expect
    */
   token_def<lex::omit> assign;
};
struct ternaryImpl
{
   template <typename Expr1Type, typename Expr2Type>
   struct result { typedef utree type; };
   template <typename Expr1Type, typename Expr2Type>
   utree operator()(Expr1Type &vec, Expr2Type &operand) const {
      utree ret;
      for (typename Expr1Type::iterator it = vec.begin(); it != vec.end(); ++it) {
         // some code
         ret = *it;
         // more code
      }
      // some code here
      return ret;
   }
};
phx::function<ternaryImpl> ternary = ternaryImpl();
template <typename Iterator>
struct Parser: public qi::grammar<Iterator, utree()>
{
    template <typename Tokens>
        Parser(const Tokens &toks):
            Parser::base_type(expression)
    {
        chain = +(
            (
               toks.symbol
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            |  (
                  factor >>
                 +(
                     toks.arrow >> factor
                  |  toks.dot >> factor
                  )
               )
               [
                  _val = construct<utree::list_type>()
                  // some code here
               ]
            ) >> toks.assign
         );
        expression = factor
            | (chain >> factor) [ _val = ternary(_1, _2) ]
            ;
    }
   rule<Iterator, utree::list_type()> chain;
   rule<Iterator, utree()> expression, factor, test;
};
int main()
{
   typedef Tokens<LexerT>::iterator_type IteratorT;
   Tokens<LexerT> l;
   Parser<IteratorT> p(l);
}

最新更新