一种比C Qsort更快的快速选择C算法



我尝试实现本文中所述的C QuickSelect算法(3路快速排序(C实现((。 但是,我得到的只是比默认 qsort 低 5 到 10 倍的性能(即使有初始洗牌(。 我试图深入研究此处提供的原始 qsort 源代码 (https://github.com/lattera/glibc/blob/master/stdlib/qsort.c(,但它太复杂了。 有没有人有更简单、更好的算法? 欢迎任何想法。 谢谢 注意:我最初的问题是尝试将数组的第 K 个最小值获取到第一个第 K 个索引。所以我打算叫快速选择K次 编辑1:这是从上面的链接复制和改编的Cython代码

cdef void qswap(void* a, void* b, const size_t size) nogil:
cdef char temp[size]# C99, use malloc otherwise
#char serves as the type for "generic" byte arrays
memcpy(temp, b,    size)
memcpy(b,    a,    size)
memcpy(a,    temp, size)
cdef void qshuffle(void* base, size_t num, size_t size) nogil: #implementation of Fisher
cdef int i, j, tmp# create local variables to hold values for shuffle
for i in range(num - 1, 0, -1): # for loop to shuffle
j = c_rand() % (i + 1)#randomise j for shuffle with Fisher Yates
qswap(base + i*size, base + j*size, size)
cdef void partition3(void* base,
size_t *low, size_t *high, size_t size,
QComparator compar) nogil:       
# Modified median-of-three and pivot selection.                      
cdef void *ptr = base
cdef size_t lt = low[0]
cdef size_t gt = high[0] # lt is the pivot
cdef size_t i = lt + 1# (+1 !) we don't compare pivot with itself
cdef int c = 0
while (i <= gt):
c = compar(ptr + i * size, ptr + lt * size)
if (c < 0):# base[i] < base[lt] => swap(i++,lt++)
qswap(ptr + lt * size, ptr + i * size, size)
i += 1
lt += 1
elif (c > 0):#base[i] > base[gt] => swap(i, gt--)
qswap(ptr + i * size, ptr + gt* size, size)
gt -= 1
else:#base[i] == base[gt]
i += 1
#base := [<<<<<lt=====gt>>>>>>]
low[0] = lt                                          
high[0] = gt 

cdef void qselectk3(void* base, size_t lo, size_t hi, 
size_t size, size_t k, 
QComparator compar) nogil:                                             
cdef size_t low = lo                                          
cdef size_t high = hi                                                      
partition3(base, &low, &high,  size, compar)    
if ((k - 1) < low): #k lies in the less-than-pivot partition           
high = low - 1
low = lo                      
elif ((k - 1) >= low and  (k - 1) <= high): #k lies in the equals-to-pivot partition
qswap(base, base + size*low, size)
return                              
else: # k > high => k lies in the greater-than-pivot partition                    
low = high + 1
high = hi 
qselectk3(base, low, high, size, k, compar)
"""
A selection algorithm to find the nth smallest elements in an unordered list. 
these elements ARE placed at the nth positions of the input array                                                                         
"""
cdef void qselect(void* base, size_t num, size_t size,
size_t n,
QComparator compar) nogil:
cdef int k
qshuffle(base, num, size)
for k in range(n):
qselectk3(base + size*k, 0, num - k - 1, size, 1, compar)

我使用 python timeit 来获取方法 pyselect(N = 50( 和 pysort 的性能。 喜欢这个

def testPySelect():
A = np.random.randint(16, size=(10000), dtype=np.int32)
pyselect(A, 50)
timeit.timeit(testPySelect, number=1)
def testPySort():
A = np.random.randint(16, size=(10000), dtype=np.int32)
pysort(A)
timeit.timeit(testPySort, number=1)

@chqrlie的答案是好的和最终的答案,但尚未完成这篇文章,我正在发布 Cython 版本以及基准测试结果。 简而言之,所提出的解决方案在长向量上比 qsort 快 2 倍!

cdef void qswap2(void *aptr, void *bptr, size_t size( nogil: cdef uint8_t* ac = <uint8_t*>aptr cdef uint8_t* bc = <uint8_t*>bptr Cdef uint8_t T 而(大小> 0(: t = ac[0];ac[0] = bc[0];bc[0] = t;交流 += 1;公元前 += 1;大小 -= 1 cdef 结构体 qselect2_stack: uint8_t *基地 uint8_t *尾页 cdef void qselect2(void *base, size_t nmemb, size_t size, size_t k, QComparator compar( nogil: cdef qselect2_stack堆栈[64] cdef qselect2_stack *sp = &stack[0] Cdef uint8_t *磅 cdef uint8_t*ub cdef uint8_t *p Cdef uint8_t *i Cdef uint8_t *j Cdef uint8_t *顶部 如果(NMEMB <2 或大小 <= 0(: 返回 顶部 =基础 if(k <nmemb(:>base sp.last =基数 + (NMEMB - 1( * 大小 sp += 1 cdef size_t偏移量 而(sp>堆栈(: sp -= 1 磅 = 底座 ub = sp.last 而(磅0(: i += 大小 而 (j>= i 和 compare(j, lb(> 0(: j -= 大小 如果 (i>= j(: 破 Qswap2(i, j, size( i += 大小 j -= 大小 # 将枢轴移动到它所属的位置 Qswap2(磅,焦耳,尺寸( # 保持处理最小的段,堆叠最大 如果 (j - lb <= ub - j(: sp.base = j + size sp.last = ub sp += 1 UB = j - 大小 还: 底座 = 磅 sp.last = j - 大小 sp += 1 lb = j + size
cdef int int_comp(void* a, void* b( nogil: cdef int ai = (<int*>a([0] cdef int bi = (<int*>b([0] 返回 (AI> BI ( - (AI <BI(>&na[0] qselect2(a, len(na(, sizeof(int(, n, int_comp(

以下是基准测试结果(1,000 次测试(:

#of 元素 K #qsort #qselect2 1,000          50     0.1261                         0.0895 1,000          100    0.1261                         0.0910 10,000         50     0.8113                         0.4157 10,000         100    0.8113                         0.4367 10,000         1,000  0.8113                         0.4746 100,000        100    7.5428                         3.8259 100,000        1,000  7,5428                         3.8325 100,000 10,000 7,5428 4.5727

对于那些好奇的人来说,这段代码是使用神经网络进行表面重建领域的一颗明珠。 再次感谢@chqrlie,您的代码在网络上是独一无二的。

以下是用于您的目的的快速实现:qsort_selectqsort的简单实现,具有自动修剪不必要的范围。

没有&& lb < top,它的行为与常规qsort除了病理情况,其中更高级的版本具有更好的启发式方法。此额外测试可防止对目标 0 之外的范围进行完全排序。(K-1(。该函数选择k最小的值并对其进行排序,数组的其余部分以不确定的顺序具有剩余值。

#include <stdio.h>
#include <stdint.h>
static void exchange_bytes(uint8_t *ac, uint8_t *bc, size_t size) {
while (size-- > 0) { uint8_t t = *ac; *ac++ = *bc; *bc++ = t; }
}
/* select and sort the k smallest elements from an array */
void qsort_select(void *base, size_t nmemb, size_t size,
int (*compar)(const void *a, const void *b), size_t k)
{
struct { uint8_t *base, *last; } stack[64], *sp = stack;
uint8_t *lb, *ub, *p, *i, *j, *top;
if (nmemb < 2 || size <= 0)
return;
top = (uint8_t *)base + (k < nmemb ? k : nmemb) * size;
sp->base = (uint8_t *)base;
sp->last = (uint8_t *)base + (nmemb - 1) * size;
sp++;
while (sp > stack) {
--sp;
lb = sp->base;
ub = sp->last;
while (lb < ub && lb < top) {
/* select middle element as pivot and exchange with 1st element */
size_t offset = (ub - lb) >> 1;
p = lb + offset - offset % size;
exchange_bytes(lb, p, size);
/* partition into two segments */
for (i = lb + size, j = ub;; i += size, j -= size) {
while (i < j && compar(lb, i) > 0)
i += size;
while (j >= i && compar(j, lb) > 0)
j -= size;
if (i >= j)
break;
exchange_bytes(i, j, size);
}
/* move pivot where it belongs */
exchange_bytes(lb, j, size);
/* keep processing smallest segment, and stack largest */
if (j - lb <= ub - j) {
sp->base = j + size;
sp->last = ub;
sp++;
ub = j - size;
} else {
sp->base = lb;
sp->last = j - size;
sp++;
lb = j + size;
}
}
}
}
int int_cmp(const void *a, const void *b) {
int aa = *(const int *)a;
int bb = *(const int *)b;
return (aa > bb) - (aa < bb);
}
#define ARRAY_SIZE  50000
int array[ARRAY_SIZE];
int main(void) {
int i;
for (i = 0; i < ARRAY_SIZE; i++) {
array[i] = ARRAY_SIZE - i;
}
qsort_select(array, ARRAY_SIZE, sizeof(*array), int_cmp, 50);
for (i = 0; i < 50; i++) {
printf("%d%c", array[i], i + 1 == 50 ? 'n' : ',');
}
return 0;
}

相关内容

  • 没有找到相关文章

最新更新