我正在工作火花v1.6。我有以下两个数据范围,我想将null转换为左外的加入结果集中的0。有什么建议吗?
dataframes
val x: Array[Int] = Array(1,2,3)
val df_sample_x = sc.parallelize(x).toDF("x")
val y: Array[Int] = Array(3,4,5)
val df_sample_y = sc.parallelize(y).toDF("y")
左外联机
val df_sample_join = df_sample_x
.join(df_sample_y,df_sample_x("x") === df_sample_y("y"),"left_outer")
Resultset
scala> df_sample_join.show
x | y
--------
1 | null
2 | null
3 | 3
But I want the resultset to be displayed as.
-----------------------------------------------
scala> df_sample_join.show
x | y
--------
1 | 0
2 | 0
3 | 3
只需使用 na.fill
:
df.na.fill(0, Seq("y"))
尝试:
val withReplacedNull = df_sample_join.withColumn("y", coalesce('y, lit(0)))
测试:
import org.apache.spark.sql.Row
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types._
val list = List(Row("a", null), Row("b", null), Row("c", 1));
val rdd = sc.parallelize(list);
val schema = StructType(
StructField("text", StringType, false) ::
StructField("y", IntegerType, false) :: Nil)
val df = sqlContext.createDataFrame(rdd, schema)
val df1 = df.withColumn("y", coalesce('y, lit(0)));
df1.show()
您可以这样修复现有数据框架:
import org.apache.spark.sql.functions.{when,lit}
val correctedDf=df_sample_join.withColumn("y", when($"y".isNull,lit(0)).otherwise($"y"))
尽管T.gawęda的答案也有效,但我认为这更可读