r语言 - 拟合优度指数 "NA"



我正在使用Lavaan运行非恢复模型。但是,发生了两件事,我不太了解。首先,拟合指数和一些标准错误是" NA"。其次,不同方向的两个变量之间的两个系数不是一致的(非恢复部分:居民摩托的 - 实现者(:一个是正的,一个是正的(至少应该朝着相同的方向;否则,如何,如何,解释?(。有人可以帮我吗?请让我知道您是否要我澄清它。谢谢!

model01<-'ResidentialMobility~a*Coun
SavingMotherPercentage~e*Affect
SavingMotherPercentage~f*Author
SavingMotherPercentage~g*Recipro
Affect~b*ResidentialMobility
Author~c*ResidentialMobility
Recipro~d*ResidentialMobility
ResidentialMobility~h*Affect
ResidentialMobility~i*Author
ResidentialMobility~j*Recipro
Affect~~Author+Recipro+ResidentialMobility
Author~~Recipro+ResidentialMobility
Recipro~~ResidentialMobility

Coun~SavingMotherPercentage
ab:=a*b
ac:=a*c
ad:=a*d
be:=b*e
cf:=c*f
dg:=d*g
'
fit <- cfa(model01, estimator = "MLR", data = data01, missing = "FIML")
summary(fit, standardized = TRUE, fit.measures = TRUE)

输出:

lavaan(0.5-21(在93次迭代后正常收敛

                                                  Used       Total
  Number of observations                           502         506
  Number of missing patterns                         4
  Estimator                                         ML      Robust
  Minimum Function Test Statistic                   NA          NA
  Degrees of freedom                                -2          -2
  Minimum Function Value               0.0005232772506
  Scaling correction factor                           
    for the Yuan-Bentler correction
User model versus baseline model:
  Comparative Fit Index (CFI)                       NA          NA
  Tucker-Lewis Index (TLI)                          NA          NA
Loglikelihood and Information Criteria:
  Loglikelihood user model (H0)              -5057.346   -5057.346
  Loglikelihood unrestricted model (H1)      -5057.084   -5057.084
  Number of free parameters                         29          29
  Akaike (AIC)                               10172.693   10172.693
  Bayesian (BIC)                             10295.032   10295.032
  Sample-size adjusted Bayesian (BIC)        10202.984   10202.984
Root Mean Square Error of Approximation:
  RMSEA                                             NA          NA
  90 Percent Confidence Interval             NA     NA          NA     NA
  P-value RMSEA <= 0.05                             NA          NA
Standardized Root Mean Square Residual:
  SRMR                                           0.006       0.006
Parameter Estimates:
  Information                                 Observed
  Standard Errors                   Robust.huber.white
Regressions:
                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  ResidentialMobility ~                                                         
    Coun       (a)           -1.543    0.255   -6.052    0.000   -1.543   -0.540
  SavingMotherPercentage ~                                                      
    Affect     (e)            3.093    1.684    1.837    0.066    3.093    0.122
    Author     (f)            2.618    0.923    2.835    0.005    2.618    0.145
    Recipro    (g)            0.061    1.344    0.046    0.964    0.061    0.003
  Affect ~                                                                      
    RsdntlMblt (b)           -0.311    0.075   -4.125    0.000   -0.311   -0.570
  Author ~                                                                      
    RsdntlMblt (c)           -0.901    0.119   -7.567    0.000   -0.901   -1.180
  Recipro ~                                                                     
    RsdntlMblt (d)           -0.313    0.082   -3.841    0.000   -0.313   -0.512
  ResidentialMobility ~                                                         
    Affect     (h)           -0.209    0.193   -1.082    0.279   -0.209   -0.114
    Author     (i)            0.475    0.192    2.474    0.013    0.475    0.363
    Recipro    (j)            0.178    0.346    0.514    0.607    0.178    0.109
  Coun ~                                                                        
SvngMthrPr                0.003    0.001    2.225    0.026    0.003    0.108
Covariances:
                         Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .Affect ~~                                                                   
   .Author                  0.667    0.171    3.893    0.000    0.667    0.534
   .Recipro                 0.669    0.119    5.623    0.000    0.669    0.773
 .ResidentialMobility ~~                                                      
   .Affect                  0.624    0.144    4.347    0.000    0.624    0.474
 .Author ~~                                                                   
   .Recipro                 0.565    0.173    3.267    0.001    0.565    0.416
 .ResidentialMobility ~~                                                      
   .Author                  1.029    0.288    3.572    0.000    1.029    0.499
   .Recipro                 0.564    0.304    1.851    0.064    0.564    0.395
Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .ResidentlMblty    1.813       NA                      1.813    1.270
   .SvngMthrPrcntg   29.591    7.347    4.027    0.000   29.591    1.499
   .Affect            5.701    0.169   33.797    0.000    5.701    7.320
   .Author            5.569    0.275   20.259    0.000    5.569    5.109
   .Recipro           5.149    0.186   27.642    0.000    5.149    5.889
   .Coun              0.367    0.069    5.336    0.000    0.367    0.735
Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .ResidentlMblty    2.169    0.259    8.378    0.000    2.169    1.064
   .SvngMthrPrcntg  363.792   23.428   15.528    0.000  363.792    0.934
   .Affect            0.797    0.129    6.153    0.000    0.797    1.314
   .Author            1.957    0.343    5.713    0.000    1.957    1.647
   .Recipro           0.941    0.126    7.439    0.000    0.941    1.231
   .Coun              0.242    0.004   54.431    0.000    0.242    0.969
Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    ab                0.480    0.120    3.991    0.000    0.480    0.308
    ac                1.390    0.261    5.328    0.000    1.390    0.637
    ad                0.483    0.133    3.640    0.000    0.483    0.276
    be               -0.962    0.548   -1.757    0.079   -0.962   -0.070
    cf               -2.359    0.851   -2.771    0.006   -2.359   -0.171
    dg               -0.019    0.421   -0.046    0.964   -0.019   -0.001

为什么要获得na,我认为是因为您指定了一个自由度-2的模型。您应该以不同的方式指定模型,以便获得积极的自由度。

相关内容

  • 没有找到相关文章

最新更新