对图像阵列应用边缘检测



我正在尝试在下面的代码中进行边缘检测:

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape
# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]
# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]
print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

###############################################################################
# Split into a training set and a test set using a stratified k fold
# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25)

我正在尝试使用 sobel 进行边缘检测,但据我所知,sobel 用于 1 张图像。如何将其应用于多个图像或图像数组?

我相信

询问 http://dsp.stackexchange.com 或 http://datascience.stackexchange.com(对我来说,听起来你对你试图提取的特征相当不清楚)将是这个问题的更好选择。

相关内容

  • 没有找到相关文章

最新更新