在8086模拟器中打印小数



我在emu8086中实现了两个大整数的乘法,代码如下:

; MULTIPLY N1 * N2 = RES
MULTIPLY PROC
    MOV BH, 0H        
    MOV CH, 0H
    MOV CL, L1; initial counter of first loop ( L1 -> length of N1 )
    DEC CX
    MUL_1:
        MOV COUNTER, CL ; store counter of first loop
        MOV CL, L2 ; initial counter of second loop ( L2 -> length of N2 )
        MUL_2:
            MOV BH, 0H
            MOV BL, COUNTER
            DEC BL
            MOV AL, N1[BX] ; get BX th byte of N1
            MOV BL, CL
            DEC BL
            MUL N2[BX] ; multiple N1 and N2 's bytes
            MOV BH, 0H
            MOV BL, COUNTER
            ADD BX, CX
            DEC BX
            ADD RES[BX], AL ; AL should be add into RES[loop1_counter + loop2_counter - 1]
            ADC RES[BX+1], AH; AH and carry should be add into RES[loop1_counter + loop2_counter ]
            ADC RES[BX+2], 0H; carry of above addition should be place here.
        LOOP MUL_2     
        MOV CL, COUNTER; retrieve loop 1 counter 
    LOOP MUL_1   
    RET ; end function 
MULTIPLY ENDP

所以,我想在Decimal Mode中打印它,我知道如何在HexaDecimal:中打印结果

PRINT_TABLE PROC
    MOV CX, 16D
    CASE:
        MOV BX, 16D
        SUB BX, CX
        MOV AL, RES[BX]
        CMP AL, 10D
        JB LBL1
        JAE LBL2

        LBL1:
            ADD AL, '0'
            JMP CONTINUE
        LBL2:
            ADD AL, 55D
        CONTINUE:
        MOV DL, AL
        MOV AH, 02H
        INT 21H        
    LOOP CASE
    RET
PRINT_TABLE ENDP

有人能帮我用十进制模式打印结果吗?

感谢您的预付款:)

不幸的是,将值转换为十进制并不像将其转换为十六进制那么简单。这是因为基数-10不是基数-2的相关基数(即10不是2的幂)。我们需要使用模数和除法来实现转换。C中的通用算法看起来像这样:

unsigned int val = 58932; // assume int is 32-bit
char buf[11] = { 0 }, *chr = buf+9; // 11 characters is enough because log10(2^32) = 9,63, +1 for 
do
{
    *chr = (val % 10) + '0'; // to ascii
    --chr;
} while((val /= 10) != 0);
++chr;

完成后,chr将指向一个空终止的char*数组,该数组将保存val的10进制值的ASCII表示。

您可以使用DIV指令在汇编中实现它。大多数优化的C编译器将其优化为乘法运算,这比除法快得多(不过,只有当除数为常数时才能完成)。

我解决了更改代码的问题,如下所示:

NORMALIZE PROC
    MOV CH, 0H
    MOV CL, L1
    ADD CL, L2
    DEC CX
    NOMRALIZE_LOOP:
        MOV BX, CX
        DEC BX
        MOV AL, RES[BX]
        MOV AH, 1H
        MUL AH
        AAM            
        MOV RES[BX], AL
        ADD RES[BX-1], AH
    LOOP NOMRALIZE_LOOP
    RET
NORMALIZE ENDP
; MULTIPLY N1 * N2 = RES
MULTIPLY PROC
    MOV CH, 0H
    MOV CL, L1
    MOV AL, '0'
    MOV BH, 0H
    SUB_N1:
        MOV BL, CL 
        DEC BL
        SUB N1[BX], AL
    LOOP SUB_N1
    MOV CL, L2
    SUB_N2:
        MOV BL, CL
        DEC BL
        SUB N2[BX], AL
    LOOP SUB_N2
    MOV CH, 0H
    MOV CL, L1
    MUL_1:
        MOV COUNTER, CL
        MOV CL, L2  
        MUL_2:
            MOV BH, 0H
            MOV BL, COUNTER
            DEC BL
            MOV AL, N1[BX]
            MOV BL, CL
            DEC BL
            MUL N2[BX]
            AAM
            MOV BH, 0H
            MOV BL, COUNTER
            ADD BX, CX
            DEC BX
            DEC BX
            ADD RES[BX], AL
            ADC RES[BX-1], AH
            ADC RES[BX-2], 0H
        LOOP MUL_2     
        MOV CL, COUNTER
    LOOP MUL_1
    RET
MULTIPLY ENDP

我用AAM函数改变了乘法和存储数字。最后,我添加了NORMALIZE函数,将结果转换为十进制。:)

希望其他人可以使用:)

UPDATE:我以前发布了一种只打印16位数字的方法,但现在我也找到了一种打印32位数字的方式,所以我决定删除以前的解决方案。以下是总体思路:-检查数字是负数还是正数-如果它是负的,用2的补码求反。但我们必须注意一个角落的情况:一个有符号的32位数字从-2^31到2^31-1,所以我们可以看到没有-2^31的正等价物。因此,我们必须挑出这个案例,并存储相应的数字(以字符串格式)并打印出来-如果它是正数,那么我们重复除以10,取余数,将其推到堆栈上,然后弹回来连续打印每个数字(这很容易,因为Assembly x8086提供了适当的例程)顺便说一句,在我的代码中,我还检查了16位的上半部分是否为零,然后转到基于相同原理的_16bits_routine。然而,在32位中除以10并不是微不足道的,因为div函数不支持它,所以我要做的是:

Let A be the number in question, we now divide by 10:
A = q*10 + r (0 <= r <= 9)
now separate A into the high and low parts:
A_high * 2^16 + A_low = q*10 + r (0 <= r <= 9)
our task is to find q and r. To do that we first divide the high part:
A_high = q_high * 10 + r_high (0<= r_high <= 9)
=> A_high * 2^16 = (q_high*2^16)*10 + r_high * 2^16 . Note that r_high is from 0 to 9, so to divide r_high * 2^16 by 10, we simply need to perform the calculations and then store the results in a lookup table! The result:
r_high * 2^16 = q_high_redundant * 10 + r_high_redundant (0 <= r_high_redundant <= 9) (found by using a lookup table) (an interesting note: q_high_redundant is only 16 bits!)
Now divide the low part:
A_low = q_low * 10 + r_low
=> A = A_high * 2^16 + A_low = (q_high*2^16 + q_low + q_high_redundant)*10 + r_low + r_high_redundant
Now you just have to divide r_low + r_high_redundant and add in to the quotient, then you get the results.

这是代码,它不是很快,但也不是太慢,所以我希望你觉得它有用:

;Written by Dang Manh Truong
.stack      100h
.data 
base_10     dw      10     
var_32bits_high     dw      0
var_32bits_low     dw      0
quotidient_32bits_high      dw      0
quotidient_32bits_low       dw      0
negate_mask         equ      0FFFFh  
lowest_signed_32bits_high        dw     8000h
lowest_signed_32bits_low         dw     0000h
lowest_signed_32bits_string      dw     "-2147483648$"
qhigh       dw      0
rhigh       dw      0
qlow        dw      0
rlow        dw      0
qhigh_redundant     dw      0
rhigh_redundant     dw      0
q_0         dw      0     
qhigh0      equ     0h
rhigh0      equ     0h
qhigh1      equ     1999h
rhigh1      equ     6h
qhigh2      equ     3333h
rhigh2      equ     2h
qhigh3      equ     4CCCh
rhigh3      equ     8h
qhigh4      equ     6666h
rhigh4      equ     4h
qhigh5      equ     8000h
rhigh5      equ     0h
qhigh6      equ     9999h
rhigh6      equ     6h
qhigh7      equ     0B333h
rhigh7      equ     2h
qhigh8      equ     0CCCCh
rhigh8      equ     8h
qhigh9      equ     0E666h
rhigh9      equ     4h   
.code
main        proc
;Initialization  
    mov     ax,@data
    mov     ds,ax     
;example: 7654321 = 0074CBB1h
;    mov     ax,74h
;    mov     var_32bits_high,ax
;    mov     ax,0CBB1h  
;    mov     var_32bits_low,ax  
;example: 10223803 = 009C0BBh
;    mov     ax,9Ch
;    mov     var_32bits_high,ax
;    mov     ax,0BBh
;    mov     var_32bits_low,ax
;example: 32763    
;    mov     ax,0h
;    mov     var_32bits_high,ax
;    mov     ax,32763
;    mov     var_32bits_low,ax   
;example: 86420 = 00015194h
;    mov     ax,1h
;    mov     var_32bits_high,ax
;    mov     ax,5194h
;    mov     var_32bits_low,ax   
;example: 2147483647 (2^31 - 1) = 7FFFFFFFh
;    mov     ax,7FFFh
;    mov     var_32bits_high,ax
;    mov     ax,0FFFFh
;    mov     var_32bits_low,ax   
;example: -2147483648 (-2^31)= 80000000h
;    mov     ax,8000h
;    mov     var_32bits_high,ax
;    mov     ax,0000h
;    mov     var_32bits_low,ax
;example: -1 = FFFF FFFFh
    mov     ax,0FFFFh
    mov     var_32bits_high,ax
    mov     ax,0FFFFh
    mov     var_32bits_low,ax    
    mov     ax,0
    mov     bx,0        ;bx: quotidient_32bits_high    
    mov     dx,0        ;dx: quotidient_32bits_low  
    mov     cx,0        ;counter = 0  
;16bits or 32bits ?
    mov     ax,var_32bits_high
    cmp     ax,0
    jne     _32bits_routine
    jmp     _16bits_routine
;;;        
_32bits_routine:
    mov     cx,0
;if == -2147483648 (-2^31)   
    mov     ax,var_32bits_high
    cmp     ax,lowest_signed_32bits_high
    jne     check_if_neg
    mov     ax,var_32bits_low
    cmp     ax,lowest_signed_32bits_low
    jne     check_if_neg
;then 
    lea     dx,lowest_signed_32bits_string 
    mov     ah,9
    int     21h
    jmp     return_to_dos
;if < 0
check_if_neg:
    mov     ax,var_32bits_high
    cmp     ax,0
    jnl      preparations
;then print "-" ...
    mov     ah,2
    mov     dl,'-'
    int     21h 
;... and negate number
    mov     ax,var_32bits_high 
    xor     ax,negate_mask
    mov     var_32bits_high,ax
    mov     ax,var_32bits_low
    xor     ax,negate_mask
    inc     ax  
    mov     var_32bits_low,ax
    jnc     preparations
    mov     ax,var_32bits_high
    inc     ax
    mov     var_32bits_high,ax           
preparations:    
    mov     ax,var_32bits_high
    mov     quotidient_32bits_high,ax
    mov     ax,var_32bits_low
    mov     quotidient_32bits_low,ax
while_32bits:
; while >0 do
    mov     ax,quotidient_32bits_high
    cmp     ax,0
    jne     div_high_part
    mov     ax,quotidient_32bits_low
    cmp     ax,0
    jne     div_high_part
    jmp     print_char    
div_high_part:           
;divide high part
    mov     dx,0
    mov     ax,quotidient_32bits_high
    div     base_10
    mov     qhigh,ax
    mov     rhigh,dx
;case rhigh
    mov     ax,rhigh
    cmp     ax,0
    je      _rhigh0
    cmp     ax,1
    je      _rhigh1
    cmp     ax,2
    je      _rhigh2
    cmp     ax,3
    je      _rhigh3
    cmp     ax,4
    je      _rhigh4
    cmp     ax,5
    je      _rhigh5
    cmp     ax,6
    je      _rhigh6
    cmp     ax,7
    je      _rhigh7
    cmp     ax,8
    je      _rhigh8
    cmp     ax,9
    je      _rhigh9
_rhigh0:
    mov     ax,qhigh0
    mov     qhigh_redundant,ax
    mov     ax,rhigh0
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh1:
    mov     ax,qhigh1
    mov     qhigh_redundant,ax
    mov     ax,rhigh1
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh2:
    mov     ax,qhigh2
    mov     qhigh_redundant,ax
    mov     ax,rhigh2
    mov     rhigh_redundant,ax    
    jmp     _aftercase
_rhigh3:
    mov     ax,qhigh3
    mov     qhigh_redundant,ax
    mov     ax,rhigh3
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh4:
    mov     ax,qhigh4
    mov     qhigh_redundant,ax
    mov     ax,rhigh4
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh5:
    mov     ax,qhigh5
    mov     qhigh_redundant,ax
    mov     ax,rhigh5
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh6:
    mov     ax,qhigh6
    mov     qhigh_redundant,ax
    mov     ax,rhigh6
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh7:
    mov     ax,qhigh7
    mov     qhigh_redundant,ax
    mov     ax,rhigh7
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh8:
    mov     ax,qhigh8
    mov     qhigh_redundant,ax
    mov     ax,rhigh8
    mov     rhigh_redundant,ax
    jmp     _aftercase
_rhigh9:    
    mov     ax,qhigh9
    mov     qhigh_redundant,ax
    mov     ax,rhigh9
    mov     rhigh_redundant,ax
    jmp     _aftercase
_aftercase:
;divide low part
    mov     ax,0
    mov     q_0,ax
    mov     dx,0
    mov     ax,quotidient_32bits_low
    div     base_10
    mov     qlow,ax
    mov     rlow,dx
    mov     ax,rlow
    add     ax,rhigh_redundant          
;if remainder >= 10 
    cmp     ax,base_10
    jl      after_if
    sub     ax,base_10
    mov     dx,1 
    mov     q_0,dx     
after_if:
    mov     rlow,ax
    mov     ax,q_0
    add     ax,qlow
    mov     qlow,ax
    jnc     label1
    mov     ax,qhigh
    inc     ax
    mov     qhigh,ax     
label1:    
    mov     ax,qlow
    add     ax,qhigh_redundant
    mov     qlow,ax
    jnc     label2
    mov     ax,qhigh
    inc     ax
    mov     qhigh,ax
label2:    
;push remainder to stack    
    mov     ax,rlow
    push    ax     
    inc     cx
    mov     ax,qhigh
    mov     quotidient_32bits_high,ax
    mov     ax,qlow
    mov     quotidient_32bits_low,ax
    jmp     while_32bits
;;;        
_16bits_routine:
    mov     ax,var_32bits_low
    mov     bx,0   ;bx: quotient 
    mov     cx,0   
while_loop:
    cmp     ax,0
    je      print_char    
    mov     dx,0
    div     base_10
    mov     bx,ax ;ax stores quotidient  
    mov     ax,dx ;dx stores remainder
;push remainder
    push    ax  
;counter = counter + 1
    inc     cx       
;numerator = quotidient
    mov     ax,bx
    jmp     while_loop 
print_char:
    cmp     cx,0
    je      return_to_dos
    pop     ax
;because at this point 0 <= ax <= 9, setting ah = 2 does not change the results
    mov     ah,2
    mov     dl,al
    add     dl,30h   ;0-> '0',1->'1',....
    int     21h
    dec     cx
    jmp     print_char
return_to_dos:
    mov     ah,4ch
    int     21h
main        endp
    end     main

最新更新