将事务数据格式的panda数据帧转换为列表-Python



我有一个事务格式的pandas数据帧:

id  purchased_item
1   apple
1   banana
1   carrot
2   banana
3   apple
4   apple
4   carrot
4   diet coke
5   banana
5   carrot
6   banana
6   carrot

我想将其转换为以下内容:

[['apple', 'banana', 'carrot'],
 ['banana'],
 ['apple'],
 ['apple', 'carrot', 'diet coke'],
 ['banana', 'carrot'],
 ['banana', 'carrot']]

我试过这个:

df.groupby(['id'])['purchased_item'].apply(list)

输出看起来像:

customer_id
1                 [apple, banana, carrot]
2                                [banana]
3                                 [apple]
4              [apple, carrot, diet coke]
5                        [banana, carrot]
6                        [banana, carrot]

下一步该怎么办?还是有不同的方法?非常感谢你的帮助。

您在问答评论中提到的解决方案:

df.groupby(['id'])['purchased_item'].apply(list).values.tolist()
In [434]: df.groupby(['id'])['purchased_item'].apply(list).values.tolist()
Out[434]:
[['apple', 'banana', 'carrot'],
 ['banana'],
 ['apple'],
 ['apple', 'carrot', 'diet_coke'],
 ['banana', 'carrot'],
 ['banana', 'carrot']]

编辑

与@Colonel Beauvel解决方案相比的一些测试性能:

In [472]: %timeit [gr['purchased_item'].tolist() for n, gr in df.groupby('id')]
100 loops, best of 3: 2.1 ms per loop
In [473]: %timeit df.groupby(['id'])['purchased_item'].apply(list).values.tolist()
1000 loops, best of 3: 1.36 ms per loop

我宁愿使用理解列表使用不同的解决方案:

[gr['purchased_item'].tolist() for n, gr in df.groupby('id')]
Out[9]:
[['apple', 'banana', 'carrot'],
 ['banana'],
 ['apple'],
 ['apple', 'carrot', 'dietcoke'],
 ['banana', 'carrot'],
 ['banana', 'carrot']]

相关内容

  • 没有找到相关文章

最新更新