g = [["xx", "A"], ["xx", "B"]]
g.any?{|x,y| y.eql? ("A"||"B"||"C")}
我想评估子数组中的第二个元素是否是"A"或"B"或"C"之一。在上述情况下,它应该返回true
。并返回false
,例如,if g=[["xx","K"]["xx","B"]
。
怎么样:
g.all? { |x,y| y =~ /^(A|B|C)$/ }
编辑:在@PriteshJ的观察之后
我认为("A" || "B" || "C")
总是给你"A"
.
g.each{|x, y| puts "ABC".include? y}
我想出了上述两个答案的组合
1.9.3p194 :177 > g =[["xx", "A"],["xx", "B"]]
=> [["xx", "A"], ["xx", "B"]]
1.9.3p194 :178 > g.all? {|i,v| "ABC".include?v}
=> true #correctly return true
1.9.3p194 :179 > g =[["xx", "A"],["xx", "Ba"]]
=> [["xx", "A"], ["xx", "Ba"]]
1.9.3p194 :180 > g.all? {|i,v| "ABC".include?v}
=> false #correctly return false
在基准测试之后编辑 受@victor的回答启发
array= ['A','B','C']
g.all? { |x,y| arr.include?y
和
h = {"A" => true, "B" => true, "C" => true}
g.all? { |x,y| h.has_key?(y)
是赢家。
基准测试的灵感来自@victor答案
require 'benchmark'
many = 500000
g = [["x", "A"], ["xx", "B"]]
h = {"A" => true, "B" => true, "C" => true}
arr = ['A','B','C']
Benchmark.bm do |b|
b.report("regexp1t") {many.times { g.all? { |x,y| y =~ /^(A|B|C)$/} } }
b.report("regexp2t") { many.times { g.all? { |x,y| y =~ /^[ABC]$/ } } }
b.report("hasht") { many.times { g.all? { |x,y| h.has_key?(y) } } }
b.report("str includet") { many.times { g.all? { |x,y| "ABC".include?y } } }
b.report("array includet") { many.times { g.all? { |x,y| arr.include?y } } }
end
#Output
user system total real
regexp1 0.640000 0.000000 0.640000 ( 0.635750)
regexp2 0.580000 0.000000 0.580000 ( 0.586788)
hash 0.370000 0.000000 0.370000 ( 0.364140)
str include 0.430000 0.010000 0.440000 ( 0.439753)
array include 0.380000 0.010000 0.390000 ( 0.381149)
干杯。
看起来好的旧哈希比正则表达式更快:
require 'benchmark'
many = 500000
g = [["x", "A"], ["xx", "B"]]
h = {"A" => true, "B" => true, "C" => true}
Benchmark.bm do |b|
b.report("regexp") { many.times { g.all? { |x,y| y =~ /^(A|B|C)$/ } } }
b.report("hash") { many.times { g.all? { |x,y| h.has_key?(y) } } }
end
# regexp 1.690000 0.000000 1.690000 ( 1.694377)
# hash 1.040000 0.000000 1.040000 ( 1.040016)