使用Pyspark并行化用于大矩阵乘法的Scipy CSR稀疏矩阵



我正在计算两个大型向量(具有相同特征(之间的余弦相似性。每组向量都表示为Scipy CSR稀疏矩阵,A和B。我想计算A X B^T ,这不会稀疏。但是,我只需要跟踪超过一定阈值的值,例如0.8。我试图用香草RDD在Pyspark中实施此功能,并想到使用针对Scipy CSR矩阵实施的快速向量操作。

a和b的行是标准化的,因此要计算余弦相似性,我只需要从A中找到每行的点乘积。A的尺寸为5,000,000 x 5,000。B的尺寸为2,000,000 x 5,000。

假设A和B太大,无法将其作为广播变量作为广播变量的记忆。我应该如何以最佳方式处理A和B?

编辑发布解决方案后,我一直在探索其他可能更清晰和最佳的方法,尤其是针对Spark Mllib indexedRowmatrix对象实现的列相似((函数。(哪个Pyspark抽象适合我的大型矩阵乘法?(

我能够在此框架中实现解决方案。
欢迎您了解为什么该解决方案很慢 - 是自定义序列化?

def csr_mult_helper(pair):
    threshold=0.8
    A_row = pair[0][0]  # keep track of the row offset
    B_col = pair[1][0]   # offset for B (this will be a column index, after the transpose op)
    A = sparse.csr_matrix(pair[0][1], pair[0][2])  # non-zero entires, size data
    B = sparse.csr_matrix(pair[1][1], pair[1][2])
    C = A * B.T  # scipy sparse mat mul
    for row_idx, row in enumerate(C):  # I think it would be better to use a filter Transformation instead
        col_indices = row.indices      #  but I had trouble with the row and column index book keeping
        col_values = row.data
        for col_idx, val in zip(col_indices, col_values):
            if val > threshold:
                yield (A_row + row_idx, B_col + col_idx, val)  # source vector, target vector, cosine score            
def parallelize_sparse_csr(M, rows_per_chunk=1):
    [rows, cols] = M.shape
    i_row = 0
    submatrices = []
    while i_row < rows:
        current_chunk_size = min(rows_per_chunk, rows - i_row)
        submat = M[i_row:(i_row + current_chunk_size)]
        submatrices.append(   (i_row,                                #  offset
                              (submat.data, submat.indices, submat.indptr),  # sparse matrix data
                              (current_chunk_size, cols)) )      # sparse matrix shape
        i_row += current_chunk_size
    return sc.parallelize(submatrices)
########## generate test data ###########
K,L,M,N = 5,2000,3,2000  # matrix dimensions (toy example)
A_ = sparse.rand(K,L, density=0.1, format='csr')
B_ = sparse.rand(M,N, density=0.1, format='csr')
print("benchmark: {} n".format((A_ * B_.T).todense()))  # benchmark solution for comparison
########## parallelize, multiply, and filter #########
t_start = time.time()
A = parallelize_sparse_csr(A_, rows_per_chunk=10)
B = parallelize_sparse_csr(B_, rows_per_chunk=10) # number of elements per partition, from B
            # warning: this code breaks if the B_ matrix rows_per_chunk parameter != 1
            # although I don't understand why yet
print("custom pyspark solution: ")
result = A.cartesian(B).flatMap(csr_mult_helper).collect()
print(results)
print("n {} s elapsed".format(time.time() - t_start))

最新更新