下面是一个创建两个数据集的示例:
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
# data set 1
X1, y1 = make_classification(n_classes=2, n_features=5, random_state=1)
# data set 2
X2, y2 = make_classification(n_classes=2, n_features=5, random_state=2)
我想使用具有相同参数值的 LogisticRegression
估计器来拟合每个数据集上的分类器:
lr = LogisticRegression()
clf1 = lr.fit(X1, y1)
clf2 = lr.fit(X2, y2)
print "Classifier for data set 1: "
print " - intercept: ", clf1.intercept_
print " - coef_: ", clf1.coef_
print "Classifier for data set 2: "
print " - intercept: ", clf2.intercept_
print " - coef_: ", clf2.coef_
问题是两个分类器是相同的:
Classifier for data set 1:
- intercept: [ 0.05191729]
- coef_: [[ 0.06704494 0.00137751 -0.12453698 -0.05999127 0.05798146]]
Classifier for data set 2:
- intercept: [ 0.05191729]
- coef_: [[ 0.06704494 0.00137751 -0.12453698 -0.05999127 0.05798146]]
对于这个简单的例子,我可以使用如下内容:
lr1 = LogisticRegression()
lr2 = LogisticRegression()
clf1 = lr1.fit(X1, y1)
clf2 = lr2.fit(X2, y2)
以避免问题。但是,问题仍然存在:通常如何复制/复制具有特定参数值的估算器?
from sklearn.base import clone
lr1 = LogisticRegression()
lr2 = clone(lr1)