我需要将所有参数组合和相应的精度保存在一种熊猫数据帧中。
我希望,我很清楚,如果我做错了什么,请指出。
示例代码为:
from sklearn.grid_search import GridSearchCV
import sklearn
from sklearn.ensemble import RandomForestClassifier
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(iris.data, iris.target, test_size=0.3, random_state=0)
rfc = RandomForestClassifier(n_jobs=-1,max_features= 'sqrt' ,n_estimators=50, oob_score = True)
param_grid = {
'n_estimators': [200, 700],
'max_features': ['auto', 'sqrt', 'log2'],
'criterion' : ['gini', 'entropy']
}
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
CV_rfc.fit(X_train, y_train)
CV_rfc.grid_scores_
我在sklearn中使用网格搜索CV,以获得最佳参数。但是,我担心的是,有什么办法可以将所有不同的参数组合和相应的精度存储在熊猫数据帧中,我可以将其保存在 CSV 文件中以供以后使用。
[mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'auto', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'auto', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'sqrt', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'sqrt', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'auto', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'auto', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'log2', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'log2', 'n_estimators': 700}]
所以,我有一个这些值的列表,我想要它的数据帧,保存在csv文件中。
len(CV_rfc.grid_scores_)
12
我在互联网上找到了它,代码是针对 python 2 的,但我修复了它以在 python 3 上运行。
这就是我在那里找到的。
import pandas as pd
from sklearn.grid_search import GridSearchCV
import numpy as np
class EstimatorSelectionHelper:
def __init__(self, models, params):
if not set(models.keys()).issubset(set(params.keys())):
missing_params = list(set(models.keys()) - set(params.keys()))
raise ValueError("Some estimators are missing parameters: %s" % missing_params)
self.models = models
self.params = params
self.keys = models.keys()
self.grid_searches = {}
def fit(self, X, y, cv=3, n_jobs=1, verbose=1, scoring=None, refit=False):
for key in self.keys:
print("Running GridSearchCV for %s." % key)
model = self.models[key]
params = self.params[key]
gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs,
verbose=verbose, scoring=scoring, refit=refit)
gs.fit(X,y)
self.grid_searches[key] = gs
def score_summary(self, sort_by='mean_score'):
def row(key, scores, params):
d = {
'estimator': key,
'min_score': min(scores),
'max_score': max(scores),
'mean_score': np.mean(scores),
'std_score': np.std(scores),
}
return pd.Series({**params,**d})
rows = [row(k, gsc.cv_validation_scores, gsc.parameters)
for k in self.keys
for gsc in self.grid_searches[k].grid_scores_]
df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False)
columns = ['estimator', 'min_score', 'mean_score', 'max_score', 'std_score']
columns = columns + [c for c in df.columns if c not in columns]
return df[columns]
from sklearn import datasets
iris = datasets.load_iris()
X_iris = iris.data
y_iris = iris.target
from sklearn.ensemble import (ExtraTreesClassifier, RandomForestClassifier,
AdaBoostClassifier, GradientBoostingClassifier)
from sklearn.svm import SVC
models = {'RandomForestClassifier': RandomForestClassifier()}
params = {'RandomForestClassifier': { 'n_estimators': [16, 32],
'max_features': ['auto', 'sqrt', 'log2'],
'criterion' : ['gini', 'entropy'] }}
helper = EstimatorSelectionHelper(models, params)
helper.fit(X_iris, y_iris)
helper.score_summary()
输出:
Running GridSearchCV for RandomForestClassifier.
Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=1)]: Done 36 out of 36 | elapsed: 1.7s finished
Out[31]:
estimator min_score mean_score max_score std_score criterion max_features n_estimators
1 RandomForestClassifier 0.921569 0.96732 1 0.0333269 gini auto 32
6 RandomForestClassifier 0.921569 0.96732 1 0.0333269 entropy auto 16
10 RandomForestClassifier 0.941176 0.966912 0.980392 0.0182045 entropy log2 16
2 RandomForestClassifier 0.901961 0.960784 1 0.0423578 gini sqrt 16
4 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 gini log2 16
7 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 entropy auto 32
8 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 entropy sqrt 16
9 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 entropy sqrt 32
3 RandomForestClassifier 0.941176 0.959967 0.980392 0.0160514 gini sqrt 32
0 RandomForestClassifier 0.901961 0.95384 0.980392 0.0366875 gini auto 16
11 RandomForestClassifier 0.901961 0.95384 0.980392 0.0366875 entropy log2 32
5 RandomForestClassifier 0.921569 0.953431 0.980392 0.0242635 gini log2 32