我有一个数据集
user feature1 feature2 feature3 feature4…
user1 f11 f12 f13 f14…
user2 f21 f22 f23 f24…
我有一个算法应用到这个数据集,这样,对于每个用户,我们可以计算这个用户和其他用户之间的相似度得分:
score{user_i}=algorithm(dict{user_i},dict{user_k})
dict{user_i}=[f11,f12,f13,f14]是一个散列。
对于每个用户,在我们计算了该用户与所有其他用户之间的相似度之后,我们将相似度分数按降序排序,并给出输出。这里是reducer.py:
#!/usr/bin/env python
import random, csv,sys;
def similarity(list1,list2):
list3=[0,0,0,0,0,0,0,0,0,0,0]
list4=[0,0,0,0,0,0,0,0,0,0,0]
if len(list1)>=5:
if list1[3]==list2[3]:
list3[3]=1
list4[3]=1
else:
list3[3]=0
list4[3]=1
if list1[4]==list2[4]:
list3[4]=1
list4[4]=1
else:
list3[4]=0
list4[4]=1
if list1[5]==list2[5]:
list3[5]=1
list4[5]=1
else:
list3[5]=0
list4[5]=1
if list1[6]!="N" and list2[6]!="N" and abs(float(list1[6].split("/") [2][0:4])-float(list2[6].split("/")[2][0:4]))<=2:
list3[6]=1
list4[6]=1
else:
list3[6]=0
list4[6]=1
if list1[7]!="N" and list1[7]!="N" and abs(float(list1[7])-float(list2[7]))<=20:
list3[7]=1
list4[7]=1
else:
list3[7]=0
list4[7]=1
list3[8]=1
list4[8]=1
if list1[9]!="N" and list2[9]!="N" and list1[9]!="" and list2[9]!="" and abs(float(list1[9])-float(list2[9]))<=20:
list3[9]=1
list4[9]=1
else:
list3[9]=0
list4[9]=1
if list1[10]!="N" and list2[10]!="N" and list1[10]!=0 and list2[10]!=0 and abs(float(list1[10])-float(list2[10]))<=3:
list3[10]=1
list4[10]=1
else:
list3[10]=0
list4[10]=1
set_1=list3[3:11]
set_2=list4[3:11]
inter_len=0
noninter_len=0
for i in range(len(set_1)):
if set_1[i]==set_2[i]:
inter_len=inter_len+1
if set_1[i]!=set_2[i]:
noninter_len=noninter_len+1
jaccard=inter_len/float(inter_len+noninter_len)
if list1[0]==list2[0]:
genre=1
elif list1[0][0:6]==list2[0][0:6]:
genre=0.5
else:
genre=0
if list1[1]==list2[1]:
rating=1
elif list1[1][0:2]==list2[1][0:2]:
rating=0.5
else:
rating=0
if list1[2]!="" and list2[2]!="" and len(set.intersection(set(list1[2].split(",")),set(list2[2].split(","))))>0:
target=1
else:
target=0
return jaccard+genre+rating+target
else:
print "Trim data incomplete"
it=0
trim_id=sys.argv[0]
dict={ }
score={ }
for line in sys.stdin:
line=line.strip().split("t")
dict[line[0]]=line[1:12]
keylist=dict.keys()
keylist.sort()
for key in keylist:
if key!=trim_id:
score[key]=similarity(dict[key],dict[trim_id])
iter=0
for key, value in sorted(score.iteritems(), key=lambda (k,v): (v,k),reverse=True):
print "%s" % (key)
iter=iter+1
if iter>=10:
break
下面是hadoop流的bash文件:
hadoop fs -rmr /tmp/somec/some/
hadoop jar *.jar
-input /user/hive/warehouse/fb_text/
-output /tmp/somec/some/
-mapper "cat"
-reducer "jac.py"
-file jac.py
fb_text以制表符分隔。这很好。我在上面测试了一个字数统计hadoop流作业。
下面是hadoop流错误:
rmr: DEPRECATED: Please use 'rm -r' instead.
14/05/14 00:31:55 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 0 minutes, Emptier interval = 0 minutes.
Deleted /tmp/somec/some
14/05/14 00:31:57 WARN streaming.StreamJob: -file option is deprecated, please use generic option -files instead.
packageJobJar: [jac.py] [/opt/cloudera/parcels/CDH-5.0.0-0.cdh5b2.p0.27/lib/hadoop- mapreduce/hadoop-streaming-2.2.0-cdh5.0.0-beta-2.jar] /tmp/streamjob3048667246321733915.jar tmpDir=null
14/05/14 00:31:58 INFO client.RMProxy: Connecting to ResourceManager at ip-10-0-0-190.us-west-2.compute.internal/10.0.0.190:8032
14/05/14 00:31:59 INFO client.RMProxy: Connecting to ResourceManager at ip-10-0-0-190.us-west-2.compute.internal/10.0.0.190:8032
14/05/14 00:32:02 INFO mapred.FileInputFormat: Total input paths to process : 1
14/05/14 00:32:04 INFO mapreduce.JobSubmitter: number of splits:2
14/05/14 00:32:04 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1399599059169_0110
14/05/14 00:32:05 INFO impl.YarnClientImpl: Submitted application application_1399599059169_0110
14/05/14 00:32:05 INFO mapreduce.Job: The url to track the job: http://ip- 10-0-0-190.us-west-2.compute.internal:8088/proxy/application_1399599059169_0110/
14/05/14 00:32:05 INFO mapreduce.Job: Running job: job_1399599059169_0110
14/05/14 00:32:13 INFO mapreduce.Job: Job job_1399599059169_0110 running in uber mode : false
14/05/14 00:32:13 INFO mapreduce.Job: map 0% reduce 0%
14/05/14 00:32:19 INFO mapreduce.Job: map 50% reduce 0%
14/05/14 00:32:20 INFO mapreduce.Job: map 100% reduce 0%
14/05/14 00:32:26 INFO mapreduce.Job: Task Id : attempt_1399599059169_0110_r_000001_0, Status : FAILED
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 127
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:320)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:533)
at org.apache.hadoop.streaming.PipeReducer.close(PipeReducer.java:134)
at org.apache.hadoop.io.IOUtils.cleanup(IOUtils.java:237)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:459)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:165)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:160)
14/05/14 00:32:26 INFO mapreduce.Job: Task Id : attempt_1399599059169_0110_r_000003_0, Status : FAILED
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 127
at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:320)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:533)
at org.apache.hadoop.streaming.PipeReducer.close(PipeReducer.java:134)
at org.apache.hadoop.io.IOUtils.cleanup(IOUtils.java:237)
at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:459)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:392)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:165)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:160)
我想知道为什么。
我的hadoop流jar是好的。我测试了一个单词计数的例子,它运行得很顺利。
这个python代码在本地linux机器上运行良好。
你只看到屏幕上一半的错误。它基本上说"python脚本失败"。
您需要进入作业跟踪器UI,找到作业,单击失败的映射任务并查看日志。希望Python写了一些东西来帮助你。
对于额外的调试,考虑在脚本中添加一些有用的"println"消息。
本地测试的一个好技巧是不要只运行Python脚本,而是以与Streaming将使用它相似的方式运行它。试一试:
cat data | map.py | sort | reduce.py
:mapper和reducer的输出都应该是t(即键和值用制表符分隔)。