My Schema:
|-- Canonical_URL: string (nullable = true)
|-- Certifications: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- Certification_Authority: string (nullable = true)
| | |-- End: string (nullable = true)
| | |-- License: string (nullable = true)
| | |-- Start: string (nullable = true)
| | |-- Title: string (nullable = true)
|-- CompanyId: string (nullable = true)
|-- Country: string (nullable = true)
|-- vendorTags: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- score: double (nullable = true)
| | |-- vendor: string (nullable = true)
我尝试了以下查询来从vendorTags
中选择嵌套字段
df3 = sqlContext.sql("select vendorTags.vendor from globalcontacts")
如何在 PySpark 中查询where
子句中的嵌套字段,如下所示
df3 = sqlContext.sql("select vendorTags.vendor from globalcontacts where vendorTags.vendor = 'alpha'")
或
df3 = sqlContext.sql("select vendorTags.vendor from globalcontacts where vendorTags.score > 123.123456")
像这样的东西..
我尝试了上述查询,只是为了得到以下错误
df3 = sqlContext.sql("select vendorTags.vendor from globalcontacts where vendorTags.vendor = 'alpha'")
16/03/15 13:16:02 INFO ParseDriver: Parsing command: select vendorTags.vendor from globalcontacts where vendorTags.vendor = 'alpha'
16/03/15 13:16:03 INFO ParseDriver: Parse Completed
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/spark/python/pyspark/sql/context.py", line 583, in sql
return DataFrame(self._ssql_ctx.sql(sqlQuery), self)
File "/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
File "/usr/lib/spark/python/pyspark/sql/utils.py", line 51, in deco
raise AnalysisException(s.split(': ', 1)[1], stackTrace)
pyspark.sql.utils.AnalysisException: u"cannot resolve '(vendorTags.vendor = cast(alpha as double))' due to data type mismatch: differing types in '(vendorTags.vendor = cast(alpha as double))' (array<string> and double).; line 1 pos 71"
对于基于相等的查询,您可以使用array_contains
:
df = sc.parallelize([(1, [1, 2, 3]), (2, [4, 5, 6])]).toDF(["k", "v"])
df.createOrReplaceTempView("df")
# With SQL
sqlContext.sql("SELECT * FROM df WHERE array_contains(v, 1)")
# With DSL
from pyspark.sql.functions import array_contains
df.where(array_contains("v", 1))
如果你想使用更复杂的谓词,你必须explode
或使用UDF,例如这样:
from pyspark.sql.types import BooleanType
from pyspark.sql.functions import udf
def exists(f):
return udf(lambda xs: any(f(x) for x in xs), BooleanType())
df.where(exists(lambda x: x > 3)("v"))
在Spark 2.4.或更高版本中,也可以使用高阶函数
from pyspark.sql.functions import expr
df.where(expr("""aggregate(
transform(v, x -> x > 3),
false,
(x, y) -> x or y
)"""))
或
df.where(expr("""
exists(v, x -> x > 3)
"""))
Python 包装器应该在 3.1 (SPARK-30681) 中可用。
在 Spark 2.4 中,您可以使用 sql API 中的过滤器函数过滤数组值。
https://spark.apache.org/docs/2.4.0/api/sql/index.html#filter
这是 pyspark 中的示例。在示例中,我们过滤掉所有空字符串的数组值:
df = df.withColumn("ArrayColumn", expr("filter(ArrayColumn, x -> x != '')"))