在Python中可视化SOBEL梯度



我正在尝试在Python中实现Sobel Operator并将其可视化。但是,我为做到这一点而苦苦挣扎。我有以下代码,该代码当前计算每个像素的梯度。

from PIL import Image
import math

def run():
    try:
        image = Image.open("brick-wall-color.jpg")
        image = image.convert('LA')
        apply_sobel_masks(image)
    except RuntimeError, e:
        print e

def apply_sobel_masks(image):
    gx = [
        [-1, 0, 1],
        [-2, 0, 2],
        [-1, 0, 1]
    ]
    gy = [
        [1, 2, 1],
        [0, 0, 0],
        [-1, -2, -1]
    ]
    width, height = image.size
    for y in range(0, height):
        for x in range(0, width):
            gradient_y = (
                gy[0][0] * get_pixel_safe(image, x - 1, y - 1, 0) +
                gy[0][1] * get_pixel_safe(image, x, y - 1, 0) +
                gy[0][2] * get_pixel_safe(image, x + 1, y - 1, 0) +
                gy[2][0] * get_pixel_safe(image, x - 1, y + 1, 0) +
                gy[2][1] * get_pixel_safe(image, x, y + 1, 0) +
                gy[2][2] * get_pixel_safe(image, x + 1, y + 1, 0)
            )
            gradient_x = (
                gx[0][0] * get_pixel_safe(image, x - 1, y - 1, 0) +
                gx[0][2] * get_pixel_safe(image, x + 1, y - 1, 0) +
                gx[1][0] * get_pixel_safe(image, x - 1, y, 0) +
                gx[1][2] * get_pixel_safe(image, x + 1, y, 0) +
                gx[2][0] * get_pixel_safe(image, x - 1, y - 1, 0) +
                gx[2][2] * get_pixel_safe(image, x + 1, y + 1, 0)
            )
            print "Gradient X: " + str(gradient_x) + " Gradient Y: " + str(gradient_y)
            gradient_magnitude = math.sqrt(pow(gradient_x, 2) + pow(gradient_y, 2))
            image.putpixel((x, y), #tbd)

    image.show()

def get_pixel_safe(image, x, y, layer):
    try:
        return image.getpixel((x, y))[layer]
    except IndexError, e:
        return 0

run()

现在,Gradient_Magnitude通常是一个超出0-255范围之外的值。990.0、1002.0、778等

所以我想做的是可视化那个梯度,但我不确定如何。大多数在线资源仅提及计算梯度角度和幅度,但没有如何在图像中表示它。

使用@saurabheights建议,我能够可视化梯度的大小。我也纠正了一个错误,是我在计算其梯度后正在编辑每个像素。这是不正确的,因为当内核在一个像素上移动时,它现在使用仅编辑的像素的值。校正的代码在下面发布:

from PIL import Image, ImageFilter
import math

def run():
    try:
        image = Image.open("geo.jpg")
        image = image.convert('LA')
        image = image.filter(ImageFilter.GaussianBlur(radius=1))
        apply_sobel_masks(image)
    except RuntimeError, e:
        print e

def apply_sobel_masks(image):
    gx = [
        [-1, 0, 1],
        [-2, 0, 2],
        [-1, 0, 1]
    ]
    gy = [
        [1, 2, 1],
        [0, 0, 0],
        [-1, -2, -1]
    ]
    width, height = image.size
    gradient_magnitudes = [[0 for x in range(width)] for y in range(height)]
    gradient_max = None
    gradient_min = None
    for y in range(0, height):
        for x in range(0, width):
            gradient_y = (
                gy[0][0] * get_pixel_safe(image, x - 1, y - 1, 0) +
                gy[0][1] * get_pixel_safe(image, x, y - 1, 0) +
                gy[0][2] * get_pixel_safe(image, x + 1, y - 1, 0) +
                gy[2][0] * get_pixel_safe(image, x - 1, y + 1, 0) +
                gy[2][1] * get_pixel_safe(image, x, y + 1, 0) +
                gy[2][2] * get_pixel_safe(image, x + 1, y + 1, 0)
            )
            gradient_x = (
                gx[0][0] * get_pixel_safe(image, x - 1, y - 1, 0) +
                gx[0][2] * get_pixel_safe(image, x + 1, y - 1, 0) +
                gx[1][0] * get_pixel_safe(image, x - 1, y, 0) +
                gx[1][2] * get_pixel_safe(image, x + 1, y, 0) +
                gx[2][0] * get_pixel_safe(image, x - 1, y - 1, 0) +
                gx[2][2] * get_pixel_safe(image, x + 1, y + 1, 0)
            )
            gradient_magnitude = math.ceil(math.sqrt(pow(gradient_x, 2) + pow(gradient_y, 2)))
            if gradient_max is None:
                gradient_max = gradient_magnitude
                gradient_min = gradient_magnitude
            if gradient_magnitude > gradient_max:
                gradient_max = gradient_magnitude
            if gradient_magnitude < gradient_min:
                gradient_min = gradient_magnitude
            gradient_magnitudes[y][x] = gradient_magnitude
    # Visualize the gradients
    for y in range(0, height):
        for x in range(0, width):
            gradient_magnitude = gradient_magnitudes[y][x]
            pixel_value = int(math.floor(255 * (gradient_magnitude - gradient_min) / (gradient_max - gradient_min)))
            image.putpixel((x, y), pixel_value)
    image.show()

def get_pixel_safe(image, x, y, layer):
    try:
        return image.getpixel((x, y))[layer]
    except IndexError, e:
        return 0

run()

将值带入特定范围的最简单方法是归一化的。对于n个值,找到所有这些值的最小值和最大值。对于范围[a,b],将每个值归一化x为: -

x'= a (b-a) *(x-min)/(max-min)

对于OP的方案,这个梯度幅度的方程将是: -

x'= 255 *(x-min)/(max-min)

相关内容

  • 没有找到相关文章

最新更新