运行以下 R 代码后:
#' load libraries
library(parallelMap)
library(mlr)
#' *** Define the task
task = makeClassifTask(id = "classif_prem",
data = data,
target = "Result")
#' *** Define the learner
lrn = makeLearner(id = "learn_prem", cl = "classif.xgboost")
#' train model
mod = train(learner = lrn, task = task)
运行 str(数据) 后,我得到:
> str(data)
Classes ‘tbl_df’ and 'data.frame': 210 obs. of 3 variables:
$ Result : Factor w/ 3 levels "Draw","Loss",..: 1 3 1 1 1 2 2 2 1 1 ...
$ RankDiff: int 11 3 11 5 -14 11 -2 -4 5 -8 ...
$ DiffDiff: num 1.5 -1 1.5 -1 -1 0 0 -1.5 0 -1.5 ...
任务摘要提供:
Supervised task: classif_prem
Type: classif
Target: Result
Observations: 210
Features:
numerics factors ordered
2 0 0
Missings: FALSE
Has weights: FALSE
Has blocking: FALSE
Classes: 3
Draw Loss Win
61 64 85
Positive class: NA
Warning message:
drop ignored
然后我得到错误:
Error in xgb.setinfo(dmat, names(p), p[[1]]) :
The length of labels must equal to the number of rows in the input data
In addition: Warning message:
drop ignored
任何帮助我避免此错误将不胜感激。谢谢。
非常感谢。额外的tbl_df类弄乱了 mlr 和 xgboost。我只做了一个数据帧,它起作用了。