我正在尝试实现一个有状态的RNN,但是它一直要求我提供"完整的input_shape(包括批量大小)"。所以我为input_shape
和input_batch_size
论点尝试了不同的东西,但似乎都不起作用。
法典:
model=Sequential()
model.add(SimpleRNN(init='uniform',
output_dim=80,
input_dim=len(pred_frame.columns),
stateful=True,
batch_input_shape=(len(pred_frame.index),len(pred_frame.columns)),
input_shape=(len(pred_frame.index),len(pred_frame.columns))))
model.add(Dense(output_dim=200,input_dim=len(pred_frame.columns),init="glorot_uniform"))
model.add(Dense(output_dim=1))
model.compile(loss="mse", class_mode='scalar', optimizer="sgd")
model.fit(X=predictor_train, y=target_train,
batch_size=len(pred_frame.index),show_accuracy=True)
追踪:
File "/Users/file.py", line 1483, in Pred
model.add(SimpleRNN(init='uniform',output_dim=80,input_dim=len(pred_frame.columns),stateful=True,batch_input_shape=(len(pred_frame.index),len(pred_frame.columns)),input_shape=(len(pred_frame.index),len(pred_frame.columns))))
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 194, in __init__
super(SimpleRNN, self).__init__(**kwargs)
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 97, in __init__
super(Recurrent, self).__init__(**kwargs)
File "/Library/Python/2.7/site-packages/keras/layers/core.py", line 43, in __init__
self.set_input_shape((None,) + tuple(kwargs['input_shape']))
File "/Library/Python/2.7/site-packages/keras/layers/core.py", line 141, in set_input_shape
self.build()
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 199, in build
self.reset_states()
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 221, in reset_states
'(including batch size).')
Exception: If a RNN is stateful, a complete input_shape must be provided (including batch size).
只需要提供 batch_input_shape= 参数,而不是 input_shape 参数。 此外,为避免输入形状错误,请确保训练数据大小是batch_size的倍数。 最后,如果使用验证拆分,则必须确保两个拆分也是batch_size的倍数。
# ensure data size is a multiple of batch_size
data_size=data_size-data_size%batch_size
# ensure validation splits are multiples of batch_size
increment=float(batch_size)/len(data_size)
val_split=float(int(val_split/(increment))) * increment
在 SimpleRNN
的定义中,删除input_dim
并input_shape
,设置:
batch_input_shape = (Number_Of_sequences, Size_Of_Each_Sequence,
Shape_Of_Element_In_Each_Sequence)
batch_input_shape
应该是长度至少为 3 的元组。
如果逐个传递序列,请设置:
Number_Of_sequences = 1
如果序列的大小不是固定的,请设置:
Size_Of_Each_Sequence = None