导出Python模型结果



嗨,我已经在导入DF的数据集上启动了一个随机森林。现在,我想导出两个结果(0-1预测)和预测概率(二维数组),并将它们匹配到我的数据集DF。那可能吗?到目前为止,我弄清楚了如何以单独的方式向CSV导出。是的,我还不是熊猫专家。有暗示吗?

# Import the `RandomForestClassifier`
from sklearn.ensemble import RandomForestClassifier

# Create the target and features numpy arrays: 
target = df["target"].values

features =df[["var1",
"var2","var3","var4","var5"]]

features_forest = features
# Building and fitting my_forest
forest = RandomForestClassifier(max_depth = 10, min_samples_split=2, n_estimators = 200, random_state = 1)
my_forest = forest.fit(features_forest, target)
# Print the score of the fitted random forest
print(my_forest.score(features_forest, target))

print(my_forest.feature_importances_)

results = my_forest.predict(features)
print(results)
predicted_probs = forest.predict_proba(features)
#predicted_probs = my_forest.predict_proba(features)
print(predicted_probs)
id_test = df['ID_CONTACT']

pd.DataFrame({"id": id_test, "relevance": results, "probs": predicted_probs }).to_csv('C:UsersmeDesktoppythondatasubmission.csv',index=False)

pd.DataFrame(predicted_probs).to_csv('C:UsersmeDesktoppythondatasubmission_2.csv',index=False)

您应该能够

df['results] = results
df = pd.concat([df, pd.DataFrame(predicted_probs, columns=['Col_1', 'Col_2'])], axis=1)

相关内容

  • 没有找到相关文章

最新更新