如何使用COQ证明以下内容?
(q v p)∧(¬p-> q)< ->(p v q)。
我的尝试
Lemma work: (forall p q: Prop, (q / p)/(~p -> q) <-> (p / q)).
Proof.
intros p q.
split.
intros q_or_p_and_not_p_implies_q.
intros p_or_q.
split.
这是一个非常相似的陈述的证明。为了匹配您给出的语句,将第一个p / q
交换为q / p
需要更多工作。
Theorem work : (forall p q : Prop, (p / q) / (~p -> q) <-> (p / q)).
Proof.
intros p q.
split.
(* Prove the "->" direction *)
intros given.
destruct given as [p_or_q _].
exact p_or_q.
(* Prove the "<-" direction *)
intros p_or_q.
refine (conj p_or_q _).
case p_or_q.
(* We're given that p is true, so ~p implies anything *)
intros p_true p_false.
case (p_false p_true).
(* We're given that q is true *)
intros q_true p_false.
exact q_true.
Qed.