我创建了一个countminsketch来计算某些值的最小频率。我正在使用执行人员服务来异步更新草图。我在Flink项目上使用此类,需要序列化,因此我实现了可序列化的界面。但是,这还不够,因为执行人员服务也需要序列化。如何以可序列化的方式使用执行人员服务?还是有任何可序列化的执行方服务的实现?
import java.io.Serializable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class CountMinSketch implements Serializable {
private static final long serialVersionUID = 1123747953291780413L;
private static final int H1 = 0;
private static final int H2 = 1;
private static final int H3 = 2;
private static final int H4 = 3;
private static final int LIMIT = 100;
private final int[][] sketch = new int[4][LIMIT];
final NaiveHashFunction h1 = new NaiveHashFunction(11, 9);
final NaiveHashFunction h2 = new NaiveHashFunction(17, 15);
final NaiveHashFunction h3 = new NaiveHashFunction(31, 65);
final NaiveHashFunction h4 = new NaiveHashFunction(61, 101);
private ExecutorService executor = Executors.newSingleThreadExecutor();
public CountMinSketch() {
// initialize sketch
}
public Future<Boolean> updateSketch(String value) {
return executor.submit(() -> {
sketch[H1][h1.getHashValue(value)]++;
sketch[H2][h2.getHashValue(value)]++;
sketch[H3][h3.getHashValue(value)]++;
sketch[H4][h4.getHashValue(value)]++;
return true;
});
}
public Future<Boolean> updateSketch(String value, int count) {
return executor.submit(() -> {
sketch[H1][h1.getHashValue(value)] = sketch[H1][h1.getHashValue(value)] + count;
sketch[H2][h2.getHashValue(value)] = sketch[H2][h2.getHashValue(value)] + count;
sketch[H3][h3.getHashValue(value)] = sketch[H3][h3.getHashValue(value)] + count;
sketch[H4][h4.getHashValue(value)] = sketch[H4][h4.getHashValue(value)] + count;
return true;
});
}
public int getFrequencyFromSketch(String value) {
int valueH1 = sketch[H1][h1.getHashValue(value)];
int valueH2 = sketch[H2][h2.getHashValue(value)];
int valueH3 = sketch[H3][h3.getHashValue(value)];
int valueH4 = sketch[H4][h4.getHashValue(value)];
return findMinimum(valueH1, valueH2, valueH3, valueH4);
}
private int findMinimum(final int a, final int b, final int c, final int d) {
return Math.min(Math.min(a, b), Math.min(c, d));
}
}
import java.io.Serializable;
public class NaiveHashFunction implements Serializable {
private static final long serialVersionUID = -3460094846654202562L;
private final static int LIMIT = 100;
private long prime;
private long odd;
public NaiveHashFunction(final long prime, final long odd) {
this.prime = prime;
this.odd = odd;
}
public int getHashValue(final String value) {
int hash = value.hashCode();
if (hash < 0) {
hash = Math.abs(hash);
}
return calculateHash(hash, prime, odd);
}
private int calculateHash(final int hash, final long prime, final long odd) {
return (int) ((((hash % LIMIT) * prime) % LIMIT) * odd) % LIMIT;
}
}
flink类:
public static class AverageAggregator implements
AggregateFunction<Tuple3<Integer, Tuple5<Integer, String, Integer, String, Integer>, Double>, Tuple3<Double, Long, Integer>, Tuple2<String, Double>> {
private static final long serialVersionUID = 7233937097358437044L;
private String functionName;
private CountMinSketch countMinSketch = new CountMinSketch();
.....
}
错误:
Exception in thread "main" org.apache.flink.api.common.InvalidProgramException: The implementation of the AggregateFunction is not serializable. The object probably contains or references non serializable fields.
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:99)
at org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.clean(StreamExecutionEnvironment.java:1559)
at org.apache.flink.streaming.api.datastream.WindowedStream.aggregate(WindowedStream.java:811)
at org.apache.flink.streaming.api.datastream.WindowedStream.aggregate(WindowedStream.java:730)
at org.apache.flink.streaming.api.datastream.WindowedStream.aggregate(WindowedStream.java:701)
at org.sense.flink.examples.stream.MultiSensorMultiStationsReadingMqtt2.<init>(MultiSensorMultiStationsReadingMqtt2.java:39)
at org.sense.flink.App.main(App.java:141)
Caused by: java.io.NotSerializableException: java.util.concurrent.Executors$FinalizableDelegatedExecutorService
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
at org.apache.flink.util.InstantiationUtil.serializeObject(InstantiationUtil.java:534)
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:81)
... 6 more
ExecutorService
包含无法序列化的状态。特别是工人线程...以及他们正在执行的任务的状态永远不会使用标准对象序列化类序列化。
如果您真的不需要序列化ExecutorService
,则可以将其标记为transient
的变量...以停止其偶然地将其序列化。
可以想象您可以序列化ExecutorService
的工作队列。但是序列化执行任务将需要您实现自定义机制来检查任务的Callable
/Runnable
...在运行时。
如果您试图序列化作为检查点计算的机制,则可能是在吠叫错误的树。序列化无法捕获线程堆栈上持有的状态。
您通常不仅序列化功能组件,而只能数据。我真的看不到您要做什么,但是如果您用@Transient
注释注释执行人员服务字段,它应该可以解决问题。