假设我有以下向量:
IDs_Complex_1 <- c("orangutan", "panda", "sloth", "mountain_gorilla", "dolphin", "snake")
IDs_Complex_2 <- c("bat", "penguin", "goat", "elephant", "tiger")
我想计算以下数据框中每个向量垂直采集的组织列中的值之间的成对皮尔逊相关系数。然后,我希望找到所有可能组合的平均PCC。
Complex_ID Tissue_X Tissue_Y Tissue_Z
orangutan 5 6 7
panda 6 7 8
sloth 7 8 9
mountain_gorilla 100 60 50
dolphin 115 62 51
snake 130 59 67
bat 2 6 7
penguin 15 11 12
goat 22 23 86
elephant 14 22 109
tiger 0 1 7
因此,为了说明复杂 1 的这一点,我希望计算:
Pdf
<- PCC of (5, 6, 7, 100, 115, 130) and (6, 7, 8, 60, 62, 59)
PCC_2 <- PCC of (5, 6, 7, 100, 115, 130) and (7, 8, 9, 50, 51, 67)
PCC_3 <- PCC of (6, 7, 8, 60, 62, 59) and (7, 8, 9, 50, 51, 67)
我想计算平均值
(PCC_1, PCC_2, PCC_3) = ?
但是,如果我有二十个左右的组织柱,其中会有20!/2!18!= 190个成对相关系数的组合(不重复(。我将如何编码?
非常感谢!
阿比盖尔
如果CC_1是你的 data.frame:
df = structure(list(Complex_ID = structure(c(6L, 7L, 9L, 5L, 2L, 10L,
1L, 8L, 4L, 3L, 11L), .Label = c("bat", "dolphin", "elephant",
"goat", "mountain_gorilla", "orangutan", "panda", "penguin",
"sloth", "snake", "tiger"), class = "factor"), Tissue_X = c(5L,
6L, 7L, 100L, 115L, 130L, 2L, 15L, 22L, 14L, 0L), Tissue_Y = c(6L,
7L, 8L, 60L, 62L, 59L, 6L, 11L, 23L, 22L, 1L), Tissue_Z = c(7L,
8L, 9L, 50L, 51L, 67L, 7L, 12L, 86L, 109L, 7L)), class = "data.frame", row.names = c(NA,
-11L))
你可以做:
cor(df[,-1])
Tissue_X Tissue_Y Tissue_Z
Tissue_X 1.0000000 0.9748668 0.4119840
Tissue_Y 0.9748668 1.0000000 0.5440719
Tissue_Z 0.4119840 0.5440719 1.0000000