如何将模型的重量和偏差正确地转化为堆叠的自动编码器



https://github.com/cmgreen210/tensorflowdeepautoencoder我正在尝试在尝试还原模型的微调步骤后保存和还原模型,然后从模型中获取变量,它给了我这个错误,valueerror:变量autoencoder_variables/striges1不存在,或者不是使用TF创建的。.get_variable()。您的意思是设置Reuse = none in varscope中吗?如果我将重复使用变成false,它会为权重和偏见创建一个新变量

这是我的代码还原模型。

def do_eval(sess, eval_correct,images_placeholder,labels_placeholder,
          data_set):
  true_count = 0 # Counts the number of correct predictions.
  steps_per_epoch = data_set.num_examples // FLAGS.batch_size
  num_examples = steps_per_epoch * FLAGS.batch_size
  for step in range(steps_per_epoch):
    feed_dict = fill_feed_dict(data_set,
          images_placeholder,
          labels_placeholder)
    true_count += sess.run(eval_correct, feed_dict=feed_dict)
    precision = true_count / num_examples
    print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
          (num_examples, true_count, precision))
def evaluation(logits, labels):
  return tf.reduce_sum(tf.cast(correct, tf.int32))
def test_nets(self):
  data = read_data_sets(FLAGS.data_dir)
  ckpt = tf.train.get_checkpoint_state("model_sps_2017-08-
          29_11:45:25")
sess = tf.InteractiveSession()
saver = tf.train.import_meta_graph('model_sps_2017-08-29_11:45:25/model.meta')
saver.restore(sess, ckpt.model_checkpoint_path)
with sess.as_default():
  ae_shape = [784, 2000, 2000, 2000, 10]
  ae = AutoEncoder(ae_shape, sess)
  input_pl = tf.placeholder(tf.float32, shape=(FLAGS.batch_size,
          FLAGS.image_pixels),name='input_pl')
  sup_net = ae.supervised_net(input_pl)
  data = read_data_sets(FLAGS.data_dir)
  labels_placeholder = tf.placeholder(tf.int32,
          shape=FLAGS.batch_size,
          name='target_pl')
  eval_correct = evaluation(sup_net, labels_placeholder)
  do_eval(sess,
      eval_correct,
      input_pl,
      labels_placeholder,
      data.test)

这是我训练和保存监督模型的代码

def main_supervised(ae):
  with ae.session.graph.as_default():
    saver = tf.train.Saver()
    sess = ae.session
    input_pl = tf.placeholder(tf.float32, shape=(FLAGS.batch_size,
                                                 FLAGS.image_pixels),
                              name='input_pl')
    logits = ae.supervised_net(input_pl)
    data = read_data_sets(FLAGS.data_dir)
    num_train = data.train.num_examples
    labels_placeholder = tf.placeholder(tf.int32,
                                        shape=FLAGS.batch_size,
                                        name='target_pl')
    loss = loss_supervised(logits, labels_placeholder)
    train_op, global_step = training(loss, FLAGS.supervised_learning_rate)
    eval_correct = evaluation(logits, labels_placeholder)
    hist_summaries = [ae['biases{0}'.format(i + 1)]
                      for i in range(ae.num_hidden_layers + 1)]
    hist_summaries.extend([ae['weights{0}'.format(i + 1)]
                           for i in range(ae.num_hidden_layers + 1)])
    hist_summaries = [tf.summary.histogram(v.op.name + "_fine_tuning", v)
                      for v in hist_summaries]
    summary_op = tf.summary.merge(hist_summaries)
    summary_writer = tf.summary.FileWriter(FLAGS.summary_dir, sess.graph_def)
    # tf.train.SummaryWriter(pjoin(FLAGS.summary_dir,
    #                                               'fine_tuning'),
    #                                         graph_def=sess.graph_def,
    #                                         flush_secs=FLAGS.flush_secs)
    vars_to_init = ae.get_variables_to_init(ae.num_hidden_layers + 1)
    vars_to_init.append(global_step)
    #sess.run(tf.initialize_variables(vars_to_init))
    init = tf.initialize_all_variables() 
    sess.run(init)
    steps =  (num_train//FLAGS.batch_size)
    for k in range(1):
      for step in range(1):
        start_time = time.time()
        feed_dict = fill_feed_dict(data.train,
                                   input_pl,
                                   labels_placeholder)
        _, loss_value = sess.run([train_op, loss],
                                 feed_dict=feed_dict)
        duration = time.time() - start_time
        # Write the summaries and print an overview fairly often.
        if step % 1 == 0:
          # Print status to stdout.
          print('Step %d/%d: loss = %.2f (%.3f sec)' % (step, steps,loss_value, duration))
          # Update the events file.
          summary_str = sess.run(summary_op, feed_dict=feed_dict)
          summary_writer.add_summary(summary_str, step)
          # summary_img_str = sess.run(
          #     tf.summary.image("training_images",
          #                      tf.reshape(input_pl,
          #                                 (FLAGS.batch_size,
          #                                  FLAGS.image_size,
          #                                  FLAGS.image_size, 1)),
          #                      max_outputs=10),
          #     feed_dict=feed_dict
          # )
          # summary_writer.add_summary(summary_img_str)
        if (step + 1) % 1000 == 0 or (step + 1) == steps:
          train_sum = do_eval_summary("training_error",
                                      sess,
                                      eval_correct,
                                      input_pl,
                                      labels_placeholder,
                                      data.train)
          val_sum = do_eval_summary("validation_error",
                                    sess,
                                    eval_correct,
                                    input_pl,
                                    labels_placeholder,
                                    data.validation)
          test_sum = do_eval_summary("test_error",
                                     sess,
                                     eval_correct,
                                     input_pl,
                                     labels_placeholder,
                                     data.test)
          summary_writer.add_summary(train_sum, step)
          summary_writer.add_summary(val_sum, step)
          summary_writer.add_summary(test_sum, step)
    folder = "model_sps_"+str(strftime("%Y-%m-%d_%H:%M:%S", gmtime()))
    os.mkdir(folder)
    folder += "/model"
    saver.save(sess, folder)
    do_eval(sess,
        eval_correct,
        input_pl,
        labels_placeholder,
        data.test)

这是我如何设置变量并在autoencoder_variables

的范围上一个一个恢复它的方式
def _restore_variables(self):
    #print(tf.get_collection(tf.GraphKeys.VARIABLES, scope='autoencoder_variables'))
    # v=tf.get_variable("autoencoder_variables/weights1", shape=(784, 2000))
    # print(v)
    with tf.variable_scope("autoencoder_variables",reuse=True ) as scope1:
      #print(tf.get_collection(tf.GraphKeys.VARIABLES, scope="autoencoder_variables"))
      #print(scope)
      #tf.Variable 'autoencoder_variables/weights1:0' shape=(784, 2000)

      for i in range(self.__num_hidden_layers + 1):
        # Train weights
        name_w = self._weights_str.format(i + 1)
        w_shape = (self.__shape[i], self.__shape[i + 1])
        self[name_w] = tf.get_variable(name_w,w_shape,trainable=False)
        # Train biases
        name_b = self._biases_str.format(i + 1)
        b_shape = (self.__shape[i + 1],)
        self[name_b] = tf.get_variable(name_b,b_shape)
        if i < self.__num_hidden_layers:
          # Hidden layer fixed weights (after pretraining before fine tuning)
          self[name_w + "_fixed"] = tf.get_variable(name_w+ "_fixed",w_shape)
          # Hidden layer fixed biases
          self[name_b + "_fixed"] = tf.get_variable(name_b+ "_fixed",b_shape)
          # Pretraining output training biases
          name_b_out = self._biases_str.format(i + 1) + "_out"
          b_shape = (self.__shape[i],)
          self[name_b_out] = tf.get_variable(name_b_out,b_shape)

追溯错误:

File "run.py", line 47, in <module>
    main()
  File "run.py", line 40, in main
    test.test_nets_1()
  File "C:UserssimjsDownloadsTensorFlowDeepAutoencoder-masterTensorFlowDeepAutoencoder-mastercodeaeautoencoder_test.py", line 55, in test_nets_1
    ae = AutoEncoder(ae_shape, sess)
  File "C:UserssimjsDownloadsTensorFlowDeepAutoencoder-masterTensorFlowDeepAutoencoder-mastercodeaeautoencoder.py", line 41, in __init__
    self._restore_variables()
  File "C:UserssimjsDownloadsTensorFlowDeepAutoencoder-masterTensorFlowDeepAutoencoder-mastercodeaeautoencoder.py", line 98, in _restore_variables
    self[name_w] = tf.get_variable(name_w,w_shape)
  File "C:UserssimjsAnaconda3libsite-packagestensorflowpythonopsvariable_scope.py", line 1065, in get_variable
    use_resource=use_resource, custom_getter=custom_getter)
  File "C:UserssimjsAnaconda3libsite-packagestensorflowpythonopsvariable_scope.py", line 962, in get_variable
    use_resource=use_resource, custom_getter=custom_getter)
  File "C:UserssimjsAnaconda3libsite-packagestensorflowpythonopsvariable_scope.py", line 367, in get_variable
    validate_shape=validate_shape, use_resource=use_resource)
  File "C:UserssimjsAnaconda3libsite-packagestensorflowpythonopsvariable_scope.py", line 352, in _true_getter
    use_resource=use_resource)
  File "C:UserssimjsAnaconda3libsite-packagestensorflowpythonopsvariable_scope.py", line 682, in _get_single_variable
    "VarScope?" % name)
ValueError: Variable autoencoder_variables/weights1 does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
  1. 检查哪些变量未通过恢复线后写入print(sess.run(tf.report_uninitialized_variables()))来初始化。

  2. 还要在还原和分析结果之前先尝试sess.run(tf.global_variables_initializer())

相关内容

  • 没有找到相关文章

最新更新