基于偏移向量移动tensor3元素的位置



我有一个Theano tensor3(即,一个三维数组)x:

[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]

以及Theano向量(即一维数组)y,我们将其称为"偏移量"向量,因为它指定了所需的偏移量:

[2, 1]

我想基于向量y移动x元素的位置,以便输出如下(在第二次元上执行移动):

[[[ a  b  c  d]
  [ e  f  g  h]
  [ 0  1  2  3]]
 [[ i  j  k  l]
  [12 13 14 15]
  [16 17 18 19]]]

其中a, b,…,l可以是任意数字

例如,有效的输出可以是:
[[[ 0  0  0  0]
  [ 0  0  0  0]
  [ 0  1  2  3]]
 [[ 0  0  0  0]
  [12 13 14 15]
  [16 17 18 19]]]

另一个有效的输出是:

[[[ 4  5  6  7]
  [ 8  9 10 11]
  [ 0  1  2  3]]
 [[20 21 22 23]
  [12 13 14 15]
  [16 17 18 19]]]

我知道theano.tensor.roll(x, shift, axis=None)函数,但是shift只能接受标量作为输入,即它移动具有相同偏移量的所有元素。

。,代码:

import theano.tensor
from theano import shared
import numpy as np
x = shared(np.arange(24).reshape((2,3,4)))
print('theano.tensor.roll(x, 2, axis=1).eval(): n{0}'.
      format(theano.tensor.roll(x, 2, axis=1).eval()))

输出:

theano.tensor.roll(x, 2, axis=1).eval():
[[[ 4  5  6  7]
  [ 8  9 10 11]
  [ 0  1  2  3]]
 [[16 17 18 19]
  [20 21 22 23]
  [12 13 14 15]]]

这不是我想要的。

如何根据偏移向量移动tensor3元素的位置?(注意,在本例提供的代码中,为了方便起见,tensor3是一个共享变量,但在我的实际代码中,它将是一个符号变量)

我找不到任何专门用于此目的的函数,所以我最终使用theano.scan:

import theano
import theano.tensor
from theano import shared
import numpy as np
y = shared(np.array([2,1]))
x = shared(np.arange(24).reshape((2,3,4)))
print('x.eval():n{0}n'.format(x.eval()))
def shift_and_reverse_row(matrix, y):    
    '''
    Shift and reverse the matrix in the direction of the first dimension (i.e., rows)
    matrix: matrix 
    y: scalar
    '''
    new_matrix = theano.tensor.zeros_like(matrix)
    new_matrix = theano.tensor.set_subtensor(new_matrix[:y,:], matrix[y-1::-1,:])
    return new_matrix
new_x, updates = theano.scan(shift_and_reverse_row, outputs_info=None,
                             sequences=[x, y[::-1]] )
new_x = new_x[:, ::-1, :]
print('new_x.eval(): n{0}'.format(new_x.eval()))
输出:

x.eval():
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
new_x.eval():
[[[ 0  0  0  0]
  [ 0  0  0  0]
  [ 0  1  2  3]]
 [[ 0  0  0  0]
  [12 13 14 15]
  [16 17 18 19]]]

相关内容

  • 没有找到相关文章

最新更新