sklearn的TfidfVectorizer词频?



我有一个关于sklearn的TfidfVectorizer的问题,当它在每个文档中执行单词的频率时。

我看到的示例代码是:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
>>>     'The dog ate a sandwich and I ate a sandwich',
>>>     'The wizard transfigured a sandwich'
>>> ]
>>> vectorizer = TfidfVectorizer(stop_words='english')
>>> print vectorizer.fit_transform(corpus).todense()
[[ 0.75458397  0.37729199  0.53689271  0.          0.        ]
[ 0.          0.          0.44943642  0.6316672   0.6316672 ]]

我的问题是:如何解释矩阵中的数字?我知道 0 意味着单词即向导在第一个文档中出现 0 次,因此它是 0,但是我如何解释数字 0.75458397?是第一份文件中"吃"字出现的频率吗?还是整个语料库中出现"吃"字的频率?

TF-IDF(意思是"术语频率 - 反向文档频率")在表示中没有给出术语的频率。

TF-IDF只对极少数文档中出现的术语给予高分,对许多文档中出现的术语给予低分,因此粗略地说,它是衡量给定文档中术语的歧视性。查看此资源以找到TF-IDF的出色描述,并更好地了解它在做什么。

如果您只需要计数,则需要使用 CountVectorizer .

我想你忘记了 TF-IDF 向量通常是归一化的,所以它们的幅度(长度或 2 范数)总是为 1。

因此,TFIDF 值0.75是"ate"的频率乘以"ate"的反向文档频率,然后除以该 TF-IDF 矢量的大小。

以下是所有肮脏的细节(跳到tfidf0 =的要点):

from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["The dog ate a sandwich and I ate a sandwich",
          "The wizard transfigured a sandwich"]
vectorizer = TfidfVectorizer(stop_words='english')
tfidfs = vectorizer.fit_transform(corpus)

from collections import Counter
import pandas as pd
columns = [k for (v, k) in sorted((v, k)
           for k, v in vectorizer.vocabulary_.items())]
tfidfs = pd.DataFrame(tfidfs.todense(),
                      columns=columns)
#     ate   dog  sandwich  transfigured  wizard 
#0   0.75  0.38      0.54          0.00    0.00
#1   0.00  0.00      0.45          0.63    0.63
df = (1 / pd.DataFrame([vectorizer.idf_], columns=columns))
#     ate   dog  sandwich  transfigured  wizard
#0   0.71  0.71       1.0          0.71    0.71
corp = [txt.lower().split() for txt in corpus]
corp = [[w for w in d if w in vectorizer.vocabulary_] for d in corp]
tfs = pd.DataFrame([Counter(d) for d in corp]).fillna(0).astype(int)
#    ate  dog  sandwich  transfigured  wizard
#0    2    1         2             0       0
#1    0    0         1             1       1
# The first document's TFIDF vector:
tfidf0 = tfs.iloc[0] * (1. / df)
tfidf0 = tfidf0 / pd.np.linalg.norm(tfidf0)
#        ate       dog  sandwich  transfigured  wizard
#0  0.754584  0.377292  0.536893           0.0     0.0
tfidf1 = tfs.iloc[1] * (1. / df)
tfidf1 = tfidf1 / pd.np.linalg.norm(tfidf1)
#    ate  dog  sandwich  transfigured    wizard
#0   0.0  0.0  0.449436      0.631667  0.631667

只需打印下面的代码,您将看到输出类似的东西

#(0, 1)        0.448320873199    Document 1, term = Dog
#(0, 3)        0.630099344518    Document 1, term = Sandwitch
    print(vectorizer.fit_transform(corpus))  
# if python 3 other wise remove () in print

注意:如果你只有单字母,请使用这个

SKLEARN的TFIDFvectorizer不会直接给你计数。若要获取计数,可以使用类方法TfidfVectorizer inverse_transformbuild_tokenizer

from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
    'The dog ate a sandwich and I ate a sandwich',
    'The wizard transfigured a sandwich'
]
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(corpus)
X_words = tfidf.inverse_transform(X) ## this will give you words instead of tfidf where tfidf > 0
tokenizer = vectorizer.build_tokenizer() ## return tokenizer function used in tfidfvectorizer
for idx,words in enumerate(X_words):
    for word in words:
        count = tokenizer(corpus[idx]).count(word)
        print(idx,word,count)

输出

0 dog 1
0 ate 2
0 sandwich 2
1 sandwich 1
1 wizard 1
1 transfigured 1
#0 means first sentence in corpus 

这是一个希望可以帮助某人的工作:)

它应该vectorizer在行中 X_words = tfidf.inverse_transform(X)而不是 TFIDF。

相关内容

  • 没有找到相关文章

最新更新