跳过空列表并继续使用功能



背景

import pandas as pd
Names =    [list(['Jon', 'Smith', 'jon', 'John']),
               list([]),
               list(['Bob', 'bobby', 'Bobs'])]
df = pd.DataFrame({'Text' : ['Jon J Smith is Here and jon John from ', 
                                       '', 
                                       'I like Bob and bobby and also Bobs diner '], 
                          'P_ID': [1,2,3], 
                          'P_Name' : Names
                         })
#rearrange columns
df = df[['Text', 'P_ID', 'P_Name']]
df
    Text                                      P_ID  P_Name
0   Jon J Smith is Here and jon John from       1   [Jon, Smith, jon, John]
1                                               2   []
2   I like Bob and bobby and also Bobs diner    3   [Bob, bobby, Bobs]

目标

我想使用以下功能

df['new']=df.Text.replace(df.P_Name,'**BLOCK**',regex=True) 

但是跳过第2行,因为它具有一个空列表[]

尝试

我尝试了以下

try:
    df['new']=df.Text.replace(df.P_Name,'**BLOCK**',regex=True) 
except ValueError:
    pass

但是我得到以下输出

                        Text                P_ID    P_Name
0   Jon J Smith is Here and jon John from       1   [Jon, Smith, jon, John]
1                                               2   []
2   I like Bob and bobby and also Bobs diner    3   [Bob, bobby, Bobs]

所需的输出

   Text P_ID P_Name  new
0                     `**BLOCK**` J `**BLOCK**` is Here and `**BLOCK**` `**BLOCK**` from
1                      []  
2                      I like `**BLOCK**` and `**BLOCK**` and also `**BLOCK**` diner

问题

如何通过跳过第2行并继续使用我的功能来获得所需的输出?

找到没有空列表的行,仅在这些行上使用您的replace方法:

# Boolean indexing the rows which do not have an empty list
m = df['P_Name'].str.len().ne(0)
df.loc[m, 'New'] = df.loc[m, 'Text'].replace(df.loc[m].P_Name,'**BLOCK**',regex=True)  

输出

                                        Text  P_ID                   P_Name                                                  New
0     Jon J Smith is Here and jon John from      1  [Jon, Smith, jon, John]  **BLOCK** J **BLOCK** is Here and **BLOCK** **BLOCK** from 
1                                       Test     2                       []                                                  NaN
2  I like Bob and bobby and also Bobs diner      3       [Bob, bobby, Bobs]  I like **BLOCK** and **BLOCK** and also **BLOCK**s diner 

相关内容

  • 没有找到相关文章

最新更新