向量的偏序



给定5个矢量,例如:

X1   X2
---------
A = [51, 134]
B = [40, 110]
C = [41, 191]
D = [35, 198]
E = [30, 140]

我试图找到类似的向量,例如如果A[X1]>B[X1]A[X2]>B[X2],我们删除B并将A保持为"好"向量。如果A[X1]>B[X1]A[X2]<B[X2],那么我们保留它们。我尝试过使用向量之间的余弦相似性,但结果不正确。例如,上述矢量将只剩下3个"好"矢量A,C,D。比较每个属性并按列排序(偏序(是我正在考虑的一种方法。但是如果我有d = 10属性呢?如何解决这个问题?

如果我理解正确,我认为你对A[Xi] > B[Xi]的意思实际上是指row[Xi] > next_row[Xi]

>>> A = [51, 134]
>>> B = [40, 110]
>>> C = [41, 191]
>>> D = [35, 198]
>>> E = [30, 140]
>>> arr = np.vstack([A, B, C, D, E])
>>> arr
array([[ 51, 134],
[ 40, 110],
[ 41, 191],
[ 35, 198],
[ 30, 140]])
>>> # (row_i[X1] > row_i+1[X1]) and (row_i[X2] > row_i+1[X2])
>>> cond1 = np.cumprod(arr[:-1] > arr[1:]).all(axis=1)
>>> cond1
array([ True, False, False, False])
>>> # (row_i[X1] > row_i+1[X1]) and (row_i[X2] < row_i+1[X2])
>>> cond2 = (arr[:-1, 0] > arr[1:, 0]) | (arr[:-1, 1] > arr[1:, 1])
>>> cond2
array([ True, False,  True,  True])
>>> cond1 | cond2
array([ True, False,  True,  True])
>>> arr[:-1][cond1 | cond2]
array([[ 51, 134],  # A
[ 41, 191],  # C
[ 35, 198]]) # D

相关内容

  • 没有找到相关文章

最新更新