将python稀疏矩阵dict转换为scipy稀疏矩阵



我使用python scikit-learn进行文档聚类,并且在dict对象中存储了一个稀疏矩阵:

例如:

doc_term_dict = { ('d1','t1'): 12,             
                  ('d2','t3'): 10,             
                  ('d3','t2'):  5              
                  }                            # from mysql data table 
<type 'dict'>

我想使用scikit-learn来进行聚类,其中输入矩阵类型为scipy.sparse.csr.csr_matrix

示例:

(0, 2164)   0.245793088885
(0, 2076)   0.205702177467
(0, 2037)   0.193810934784
(0, 2005)   0.14547028437
(0, 1953)   0.153720023365
...
<class 'scipy.sparse.csr.csr_matrix'>

我找不到将dict转换为这个csr矩阵的方法(我从未使用过scipy。)

非常简单。首先阅读字典并将关键字转换为相应的行和列。Scipy支持(并为此推荐)稀疏矩阵的COO坐标格式。

将其传递给datarowcolumn,其中A[row[k], column[k] = data[k](对于所有k)定义矩阵。然后让Scipy转换为CSR。

请检查,我的行和列是否符合您的要求,我可能会将它们转置。我还假设输入将是1索引的。

我下面的代码打印:

(0, 0)        12
(1, 2)        10
(2, 1)        5

代码:

#!/usr/bin/env python3
#http://stackoverflow.com/questions/26335059/converting-python-sparse-matrix-dict-to-scipy-sparse-matrix
from scipy.sparse import csr_matrix, coo_matrix
def convert(term_dict):
    ''' Convert a dictionary with elements of form ('d1', 't1'): 12 to a CSR type matrix.
    The element ('d1', 't1'): 12 becomes entry (0, 0) = 12.
    * Conversion from 1-indexed to 0-indexed.
    * d is row
    * t is column.
    '''
    # Create the appropriate format for the COO format.
    data = []
    row = []
    col = []
    for k, v in term_dict.items():
        r = int(k[0][1:])
        c = int(k[1][1:])
        data.append(v)
        row.append(r-1)
        col.append(c-1)
    # Create the COO-matrix
    coo = coo_matrix((data,(row,col)))
    # Let Scipy convert COO to CSR format and return
    return csr_matrix(coo)
if __name__=='__main__':
    doc_term_dict = { ('d1','t1'): 12,             
                ('d2','t3'): 10,             
                ('d3','t2'):  5              
                }   
    print(convert(doc_term_dict))

我们可以让@Unapidera的(优秀的)答案变得稀疏一点:

from scipy.sparse import csr_matrix
def _dict_to_csr(term_dict):
    term_dict_v = list(term_dict.itervalues())
    term_dict_k = list(term_dict.iterkeys())
    shape = list(repeat(np.asarray(term_dict_k).max() + 1,2))
    csr = csr_matrix((term_dict_v, zip(*term_dict_k)), shape = shape)
    return csr

与@carsonc相同,但适用于Python 3.X:

from scipy.sparse import csr_matrix
def _dict_to_csr(term_dict):
    term_dict_v = term_dict.values()
    term_dict_k = term_dict.keys()
    term_dict_k_zip = zip(*term_dict_k)
    term_dict_k_zip_list = list(term_dict_k_zip)
    shape = (len(term_dict_k_zip_list[0]), len(term_dict_k_zip_list[1]))
    csr = csr_matrix((list(term_dict_v), list(map(list, zip(*term_dict_k)))), shape = shape)
    return csr

一种使用np.fromiter的替代方法,作为使用list存储元素的替代方法。

from scipy.sparse import csr_matrix
import numpy as np
def _dict_to_csr(term_dict, shape=None):
    data = np.fromiter(term_dict.values(), dtype=np.float32)
    rows_tuple, columns_tuple = zip(*term_dict.keys())
    rows = np.fromiter(rows_tuple, dtype=int)
    columns = np.fromiter(columns_tuple, dtype=int)
    
    return csr_matrix((data, (rows, columns)), shape=shape)

相关内容

  • 没有找到相关文章

最新更新