我使用python scikit-learn
进行文档聚类,并且在dict
对象中存储了一个稀疏矩阵:
例如:
doc_term_dict = { ('d1','t1'): 12,
('d2','t3'): 10,
('d3','t2'): 5
} # from mysql data table
<type 'dict'>
我想使用scikit-learn
来进行聚类,其中输入矩阵类型为scipy.sparse.csr.csr_matrix
示例:
(0, 2164) 0.245793088885
(0, 2076) 0.205702177467
(0, 2037) 0.193810934784
(0, 2005) 0.14547028437
(0, 1953) 0.153720023365
...
<class 'scipy.sparse.csr.csr_matrix'>
我找不到将dict
转换为这个csr矩阵的方法(我从未使用过scipy
。)
非常简单。首先阅读字典并将关键字转换为相应的行和列。Scipy支持(并为此推荐)稀疏矩阵的COO坐标格式。
将其传递给data
、row
和column
,其中A[row[k], column[k] = data[k]
(对于所有k)定义矩阵。然后让Scipy转换为CSR。
请检查,我的行和列是否符合您的要求,我可能会将它们转置。我还假设输入将是1索引的。
我下面的代码打印:
(0, 0) 12
(1, 2) 10
(2, 1) 5
代码:
#!/usr/bin/env python3
#http://stackoverflow.com/questions/26335059/converting-python-sparse-matrix-dict-to-scipy-sparse-matrix
from scipy.sparse import csr_matrix, coo_matrix
def convert(term_dict):
''' Convert a dictionary with elements of form ('d1', 't1'): 12 to a CSR type matrix.
The element ('d1', 't1'): 12 becomes entry (0, 0) = 12.
* Conversion from 1-indexed to 0-indexed.
* d is row
* t is column.
'''
# Create the appropriate format for the COO format.
data = []
row = []
col = []
for k, v in term_dict.items():
r = int(k[0][1:])
c = int(k[1][1:])
data.append(v)
row.append(r-1)
col.append(c-1)
# Create the COO-matrix
coo = coo_matrix((data,(row,col)))
# Let Scipy convert COO to CSR format and return
return csr_matrix(coo)
if __name__=='__main__':
doc_term_dict = { ('d1','t1'): 12,
('d2','t3'): 10,
('d3','t2'): 5
}
print(convert(doc_term_dict))
我们可以让@Unapidera的(优秀的)答案变得稀疏一点:
from scipy.sparse import csr_matrix
def _dict_to_csr(term_dict):
term_dict_v = list(term_dict.itervalues())
term_dict_k = list(term_dict.iterkeys())
shape = list(repeat(np.asarray(term_dict_k).max() + 1,2))
csr = csr_matrix((term_dict_v, zip(*term_dict_k)), shape = shape)
return csr
与@carsonc相同,但适用于Python 3.X:
from scipy.sparse import csr_matrix
def _dict_to_csr(term_dict):
term_dict_v = term_dict.values()
term_dict_k = term_dict.keys()
term_dict_k_zip = zip(*term_dict_k)
term_dict_k_zip_list = list(term_dict_k_zip)
shape = (len(term_dict_k_zip_list[0]), len(term_dict_k_zip_list[1]))
csr = csr_matrix((list(term_dict_v), list(map(list, zip(*term_dict_k)))), shape = shape)
return csr
一种使用np.fromiter
的替代方法,作为使用list
存储元素的替代方法。
from scipy.sparse import csr_matrix
import numpy as np
def _dict_to_csr(term_dict, shape=None):
data = np.fromiter(term_dict.values(), dtype=np.float32)
rows_tuple, columns_tuple = zip(*term_dict.keys())
rows = np.fromiter(rows_tuple, dtype=int)
columns = np.fromiter(columns_tuple, dtype=int)
return csr_matrix((data, (rows, columns)), shape=shape)