Scikit-learn的GridSearchCV与线性内核svm需要太长时间



我从sklearn网站上获取了示例代码,即

tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]},
        {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
scores = [('f1', f1_score)]
for score_name, score_func in scores:
    print "# Tuning hyper-parameters for %s" % score_name
    print
    clf = GridSearchCV( SVC(), tuned_parameters, score_func=score_func, n_jobs=-1, verbose=2 )
    clf.fit(X_train, Y_train)
    print "Best parameters set found on development set:"
    print
    print clf.best_estimator_
    print
    print "Grid scores on development set:"
    print
    for params, mean_score, scores in clf.grid_scores_:
        print "%0.3f (+/-%0.03f) for %r" % (
            mean_score, scores.std() / 2, params)
    print
    print "Detailed classification report:"
    print
    print "The model is trained on the full development set."
    print "The scores are computed on the full evaluation set."
    print
    y_true, y_pred = Y_test, clf.predict(X_test)
    print cross_validation.classification_report(y_true, y_pred)
    print

X_train是一个大约 70 行的熊猫数据帧。

输出为

[GridSearchCV] kernel=rbf, C=1, gamma=0.001 ....................................
[GridSearchCV] kernel=rbf, C=1, gamma=0.001 ....................................
[GridSearchCV] kernel=rbf, C=1, gamma=0.001 ....................................
[GridSearchCV] kernel=rbf, C=1, gamma=0.0001 ...................................
[Parallel(n_jobs=-1)]: Done   1 jobs       | elapsed:    0.0s
[GridSearchCV] ........................... kernel=rbf, C=1, gamma=0.001 -   0.0s
[GridSearchCV] ........................... kernel=rbf, C=1, gamma=0.001 -   0.0s
[GridSearchCV] ........................... kernel=rbf, C=1, gamma=0.001 -   0.0s
[GridSearchCV] .......................... kernel=rbf, C=1, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=rbf, C=1, gamma=0.0001 ...................................
[GridSearchCV] kernel=rbf, C=1, gamma=0.0001 ...................................
[GridSearchCV] kernel=rbf, C=10, gamma=0.001 ...................................
[GridSearchCV] kernel=rbf, C=10, gamma=0.001 ...................................
[GridSearchCV] .......................... kernel=rbf, C=1, gamma=0.0001 -   0.0s
[GridSearchCV] .......................... kernel=rbf, C=1, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=rbf, C=10, gamma=0.001 ...................................
[GridSearchCV] .......................... kernel=rbf, C=10, gamma=0.001 -   0.0s
[GridSearchCV] .......................... kernel=rbf, C=10, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=10, gamma=0.0001 ..................................
[GridSearchCV] .......................... kernel=rbf, C=10, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=10, gamma=0.0001 ..................................
[GridSearchCV] kernel=rbf, C=10, gamma=0.0001 ..................................
[GridSearchCV] ......................... kernel=rbf, C=10, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=rbf, C=100, gamma=0.001 ..................................
[GridSearchCV] ......................... kernel=rbf, C=10, gamma=0.0001 -   0.0s
[GridSearchCV] ......................... kernel=rbf, C=10, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=rbf, C=100, gamma=0.001 ..................................
[GridSearchCV] ......................... kernel=rbf, C=100, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=100, gamma=0.001 ..................................
[GridSearchCV] kernel=rbf, C=100, gamma=0.0001 .................................
[GridSearchCV] ......................... kernel=rbf, C=100, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=100, gamma=0.0001 .................................
[GridSearchCV] ......................... kernel=rbf, C=100, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=100, gamma=0.0001 .................................
[GridSearchCV] kernel=rbf, C=1000, gamma=0.001 .................................
[GridSearchCV] ........................ kernel=rbf, C=100, gamma=0.0001 -   0.0s
[GridSearchCV] ........................ kernel=rbf, C=100, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=rbf, C=1000, gamma=0.001 .................................
[GridSearchCV] ........................ kernel=rbf, C=100, gamma=0.0001 -   0.0s
[GridSearchCV] ........................ kernel=rbf, C=1000, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=1000, gamma=0.001 .................................
[GridSearchCV] kernel=rbf, C=1000, gamma=0.0001 ................................
[GridSearchCV] kernel=rbf, C=1000, gamma=0.0001 ................................
[GridSearchCV] ........................ kernel=rbf, C=1000, gamma=0.001 -   0.0s
[GridSearchCV] kernel=rbf, C=1000, gamma=0.0001 ................................
[GridSearchCV] ........................ kernel=rbf, C=1000, gamma=0.001 -   0.0s
[GridSearchCV] ....................... kernel=rbf, C=1000, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=linear, C=1 ..............................................
[GridSearchCV] ....................... kernel=rbf, C=1000, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=linear, C=1 ..............................................
[GridSearchCV] kernel=linear, C=1 ..............................................
[GridSearchCV] ....................... kernel=rbf, C=1000, gamma=0.0001 -   0.0s
[GridSearchCV] kernel=linear, C=10 .............................................

然后它永远不会结束。我用Lion在Mac Book Pro上运行它。我做错了什么?

在运行网格搜索之前,通过规范化数据集来修复它,如下所示:在熊猫中规范化数据。

相关内容

  • 没有找到相关文章

最新更新