我正在尝试阅读一个包含科学记数法数字的列的.csv。无论我做什么,它最终都会将它们读取为字符串:
def readData(path, cols):
types = [str, str, str, str, np.float32]
t_dict = {key: value for (key, value) in zip(c, types)}
df = pd.read_csv(path, header=0, sep=';', encoding='latin1', usecols=cols, dtype=t_dict, chunksize=5000)
return df
c = [3, 6, 7, 9, 16]
df2017_chunks = readData('Data/2017.csv', c)
def preProcess(df, f):
df.columns = f
df['id_client'] = df['id_client'].apply(lambda x: str(int(float(x))))
return df
f = ['issue_date', 'channel', 'product', 'issue', 'id_client']
df = pd.DataFrame(columns=f)
for chunk in df2017_chunks:
aux = preProcess(chunk, f)
df = pd.concat([df, aux])
如何正确读取这些数据?
预处理函数在应用其他函数后应用字符串转换。这是预期行为吗?
你能试试吗:
df = pd.read_csv(path, header=0, sep=';', encoding='latin1', usecols=cols, chunksize=5000)
df["id_client"] = pd.to_numeric(df["id_client"])
示例数据帧:
df = pd.DataFrame({'issue_date': [1920,1921,1922,1923,1924,1925,1926],
'name': ['jon doe1','jon doe2','jon doe3','jon doe4','jon doe5','jon doe6','jon doe7'],
'id_cleint': ['18.61', '17.60', '18.27', '16.18', '16.81', '16.37', '67.07']})
您可以使用以下命令检查数据帧的类型
print df.dtypes
输出:
id_client object
issue_date int64
name object
dtype: object
使用以下命令将 df['id_client']
dtype 从 object
转换为float64
:
df['id_client'] = pd.to_numeric(df['id_client'], errors='coerce')
errors='coerce'
将导致无法转换项目时NaN
。 使用命令
print df.dtypes
结果为以下输出:
id_client float64
issue_date int64
name object
dtype: object