当我在最近的邻居中传递不同形式的 K 时出错(Sci 套件学习)



在scikit learn中运行k最近邻时,当我将k设置为21时,我得到值错误。 但是当我将 k 设置为 k=np.arange(20) +1 时,我没有收到错误,那么这两者有什么区别呢?

k = np.arange(21)
parameters = {'n_neighbors': k}
knn = sklearn.neighbors.KNeighborsClassifier()
clf = sklearn.grid_search.GridSearchCV(knn, parameters, cv=10)
clf.fit(X_train, Y_train)
ValueError: Invalid shape in axis 1: 0.

也可以有人解释一下什么是

a = clf.grid_scores_
scores = [b.cv_validation_scores for b in a]

输出分数如下:

array([ 1.        ,  0.90909091,  1.        ,  0.72727273,  0.9       ,
         1.        ,  1.        ,  1.        ,  1.        ,  0.88888889]),

分类器的准确性clf.grid_scores_,但这cv_validation分数是多少?

GridSearchCV需要搜索的每个参数的值列表。如果只想为搜索设置一个值,请将其放入列表中:

parameters = {'n_neighbors': [21]} # ok
parameters = {'n_neighbors': np.range(21)} # error, the first value is 0
parameters = {'n_neighbors': np.range(21) + 1} # ok

请注意,该列表中的每个值都应该是该参数的有效值。例如,使用 np.range(p) 作为n_neighbors的参数列表是错误的,因为它具有0 对于邻居数是无效的值。

根据文件,

cv_validation_scores [是] 每个折叠的分数列表

因此grid_scores_必须是相应cv_validation_scores的平均值。

相关内容

  • 没有找到相关文章