OpenCV中的Sobel导数



我的任务是制作自己的Sobel方法,而不是使用OpenCV中发现的cv::Sobel。我试着实现一个我在Programming techniques

找到的

当我运行程序时,cv::Mat抛出了一个错误。有人知道为什么吗?

Sobel方法:

int sobelCorrelation(Mat InputArray, int x, int y, String xory)
{
    if (xory == "x") {
        return InputArray.at<uchar>(y - 1, x - 1) +
            2 * InputArray.at<uchar>(y, x - 1) +
            InputArray.at<uchar>(y + 1, x - 1) -
            InputArray.at<uchar>(y - 1, x + 1) -
            2 * InputArray.at<uchar>(y, x + 1) -
            InputArray.at<uchar>(y + 1, x + 1);
    }
    else if (xory == "y")
    {
        return InputArray.at<uchar>(y - 1, x - 1) +
            2 * InputArray.at<uchar>(y - 1, x) +
            InputArray.at<uchar>(y - 1, x + 1) -
            InputArray.at<uchar>(y + 1, x - 1) -
            2 * InputArray.at<uchar>(y + 1, x) -
            InputArray.at<uchar>(y + 1, x + 1);
    }
    else
    {
        return 0;
    }
}

在另一个函数中调用和处理它:

void imageOutput(Mat image, String path) {
    image = imread(path, 0);
    Mat dst;
    dst = image.clone();
    int sum, gx, gy;
    if (image.data && !image.empty()){
        for (int y = 0; y < image.rows; y++)
            for (int x = 0; x < image.cols; x++)
                dst.at<uchar>(y, x) = 0.0;
        for (int y = 1; y < image.rows - 1; ++y) {
            for (int x = 1; x < image.cols - 1; ++x){ 
                gx = sobelCorrelation(image, x, y, "x");
                gy = sobelCorrelation(image, x, y, "y");
                sum = absVal(gx) + absVal(gy);
                if (sum > 255)
                    sum = 255;
                else if (sum < 0)
                    sum = 0;
                dst.at<uchar>(x, y) = sum;
            }
        }
        namedWindow("Original");
        imshow("Original", image);
        namedWindow("Diagonal Edges");
        imshow("Diagonal Edges", dst);
    }
    waitKey(0);
}
主:

int main(int argc, char* argv[]) {
    Mat image;
    imageOutput(image, "C:/Dropbox/2-falling-toast-ted-kinsman.jpg");
    return 0;
}
abval方法:
int absVal(int v)
{
    return v*((v < 0)*(-1) + (v > 0));
}

运行时抛出以下错误:

Unhandled exception at 0x00007FFC9365A1C8 in Miniproject01.exe: Microsoft C++ exception: cv::Exception at memory location 0x000000A780A4F110.

和指向这里:

template<typename _Tp> inline
_Tp& Mat::at(int i0, int i1)
{
    CV_DbgAssert( dims <= 2 && data && (unsigned)i0 < (unsigned)size.p[0] &&
        (unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels()) &&
        CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
    return ((_Tp*)(data + step.p[0] * i0))[i1];
}

如果任何人有任何建议或想法,我做错了,这将是非常感激!

此代码片段演示如何计算将图像与索贝尔核卷积的索贝尔3x3导数。您可以很容易地扩展到不同的内核大小,将内核半径作为my_sobel的输入,并创建适当的内核。

#include <opencv2opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;

void my_sobel(const Mat1b& src, Mat1s& dst, int direction)
{
    Mat1s kernel;
    int radius = 0;
    // Create the kernel
    if (direction == 0)
    {
        // Sobel 3x3 X kernel
        kernel = (Mat1s(3,3) << -1, 0, +1, -2, 0, +2, -1, 0, +1);
        radius = 1;
    }
    else
    {
        // Sobel 3x3 Y kernel
        kernel = (Mat1s(3, 3) << -1, -2, -1, 0, 0, 0, +1, +2, +1);
        radius = 1;
    }
    // Handle border issues
    Mat1b _src;
    copyMakeBorder(src, _src, radius, radius, radius, radius, BORDER_REFLECT101);
    // Create output matrix
    dst.create(src.rows, src.cols);
    // Convolution loop
    // Iterate on image 
    for (int r = radius; r < _src.rows - radius; ++r)
    {
        for (int c = radius; c < _src.cols - radius; ++c)
        {
            short s = 0;
            // Iterate on kernel
            for (int i = -radius; i <= radius; ++i)
            {
                for (int j = -radius; j <= radius; ++j)
                {
                    s += _src(r + i, c + j) * kernel(i + radius, j + radius);
                }
            }
            dst(r - radius, c - radius) = s;
        }
    }
}
int main(void)
{
    Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
    // Compute custom Sobel 3x3 derivatives
    Mat1s sx, sy;
    my_sobel(img, sx, 0);
    my_sobel(img, sy, 1);
    // Edges L1 norm
    Mat1b edges_L1;
    absdiff(sx, sy, edges_L1);

    // Check results against OpenCV
    Mat1s cvsx,cvsy;
    Sobel(img, cvsx, CV_16S, 1, 0);
    Sobel(img, cvsy, CV_16S, 0, 1);
    Mat1b cvedges_L1;
    absdiff(cvsx, cvsy, cvedges_L1);
    Mat diff_L1;
    absdiff(edges_L1, cvedges_L1, diff_L1);
    cout << "Number of different pixels: " << countNonZero(diff_L1) << endl;
    return 0;
}

如果我是你,我几乎总是避免使用for循环(如果可能的话)。不必要的for循环往往会减慢执行速度。相反,尽可能重用。例如,下面的代码使用filter2D给出2d关联结果:

Mat kern = (Mat_<float>(3,3)<<-1,0,1,-2,0,2,-1,0,1);
Mat dest;
cv::filter2D(src,dest,src.type(),kern);

如果你想得到卷积结果,你需要在过滤之前翻转内核'kern'。

cv::flip(kern,kern, -1);

如果你想挤出更多的性能,你可以使用可分离过滤器'sepFilter2D'

谢谢!我能够使用上面的内核生成渐变地图,并使用openCV代码filter2D从使用自定义内核在opencv 2DFilter -导致崩溃…卷积如何?

将图像与内核进行卷积。我使用的代码是

    #include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
    //Loading the source image
    Mat src;
    //src = imread("1.png");
    src = cv::imread("E:\Gray_Image.bmp", 0);
    //Output image of the same size and the same number of channels as src.
    Mat dst1,dst2,grad;
    //Mat dst = src.clone();   //didn't help...
    //desired depth of the destination image
    //negative so dst will be the same as src.depth()
    int ddepth = -1;
    //the convolution kernel, a single-channel floating point matrix:

    //Mat kernel = imread("kernel.png");
    Mat kernel_x = (Mat_<float>(3, 3) << -1, 0, 1, -2, 0, 2, -1, 0, 1);
    Mat kernel_y = (Mat_<float>(3, 3) << -1, -2, -1, 0, 0, 0, 1, 2, 1);
    kernel_x.convertTo(kernel_x, CV_32F);  kernel_y.convertTo(kernel_y, CV_32F);   //<<not working
                                          //normalize(kernel, kernel, 1.0, 0.0, 4, -1, noArray());  //doesn't help
                                          //cout << kernel.size() << endl;  // ... gives 11, 11
                                          //however, the example from tutorial that does work:
                                          //kernel = Mat::ones( 11, 11, CV_32F )/ (float)(11*11);
                                          //default value (-1,-1) here means that the anchor is at the kernel center.
    Point anchor = Point(-1, -1);
    //value added to the filtered pixels before storing them in dst.
    double delta = 0;
    //alright, let's do this...
    filter2D(src, dst1, ddepth, kernel_x, anchor, delta, BORDER_DEFAULT);
    filter2D(src, dst2, ddepth, kernel_y, anchor, delta, BORDER_DEFAULT);
    imshow("Source", src);     //<< unhandled exception here
    //imshow("Kernel1", kernel_x);  imshow("Kernel2", kernel_y);
    imshow("Destination1", dst1);
    imshow("Destination2", dst2);
    addWeighted(dst1, 0.5, dst2, 0.5, 0, grad);
    imshow("Destination3", grad);
    waitKey(1000000);
    return 0;
}

相关内容

  • 没有找到相关文章

最新更新