为了提取下面两个数据帧之间的不匹配,我已经创建了一个新的数据帧来替换不匹配
我现在需要的是一个不匹配的列表:
dfA <- structure(list(animal1 = c("AA", "TT", "AG", "CA"), animal2 = c("AA", "TB", "AG", "CA"), animal3 = c("AA", "TT", "AG", "CA")), .Names = c("animal1", "animal2", "animal3"), row.names = c("snp1", "snp2", "snp3", "snp4"), class = "data.frame")
# > dfA
# animal1 animal2 animal3
# snp1 AA AA AA
# snp2 TT TB TT
# snp3 AG AG AG
# snp4 CA CA CA
dfB <- structure(list(animal1 = c("AA", "TT", "AG", "CA"), animal2 = c("AA", "TB", "AG", "DF"), animal3 = c("AA", "TB", "AG", "DF")), .Names = c("animal1", "animal2", "animal3"), row.names = c("snp1", "snp2", "snp3", "snp4"), class = "data.frame")
#> dfB
# animal1 animal2 animal3
#snp1 AA AA AA
#snp2 TT TB TB
#snp3 AG AG AG
#snp4 CA DF DF
为了澄清不匹配,这里将它们标记为00:
# animal1 animal2 animal3
# snp1 AA AA AA
# snp2 TT TB 00
# snp3 AG AG AG
# snp4 CA 00 00
我需要以下输出:
structure(list(snpname = structure(c(1L, 2L, 2L), .Label = c("snp2", "snp4"), class = "factor"), animalname = structure(c(2L, 1L, 2L), .Label = c("animal2", "animal3"), class = "factor"), alleledfA = structure(c(2L, 1L, 1L), .Label = c("CA", "TT"), class = "factor"), alleledfB = structure(c(2L, 1L, 1L), .Label = c("DF", "TB"), class = "factor")), .Names = c("snpname", "animalname", "alleledfA", "alleledfB"), class = "data.frame", row.names = c(NA, -3L))
# snpname animalname alleledfA alleledfB
#1 snp2 animal3 TT TB
#2 snp4 animal2 CA DF
#3 snp4 animal3 CA DF
到目前为止,我一直在尝试从lapply
函数中提取额外的数据,我用它来用零替换不匹配,但没有成功。我还试图编写一个ifelse函数,但没有成功。希望你们能在这里帮我!
最终,这将针对维度为100K乘1000的数据集运行,因此效率是亲的
这个问题有data.table
标记,所以下面是我使用这个包的尝试。第一步是将行名转换为列,因为data.table
不喜欢这些,然后在rbind
之后转换为长格式,并为每个数据集设置一个id,找到有多个唯一值的地方,并转换回宽格式
library(data.table)
setDT(dfA, keep.rownames = TRUE)
setDT(dfB, keep.rownames = TRUE)
dcast(melt(rbind(dfA,
dfB,
idcol = TRUE),
id = 1:2
)[,
if(uniqueN(value) > 1L) .SD,
by = .(rn, variable)],
rn + variable ~ .id)
# rn variable 1 2
# 1: snp2 animal3 TT TB
# 2: snp4 animal2 CA DF
# 3: snp4 animal3 CA DF
这里有一个使用矩阵的数组索引的解决方案:
i.arr <- which(dfA != dfB, arr.ind=TRUE)
data.frame(snp=rownames(dfA)[i.arr[,1]], animal=colnames(dfA)[i.arr[,2]],
A=dfA[i.arr], B=dfB[i.arr])
# snp animal A B
#1 snp4 animal2 CA DF
#2 snp2 animal3 TT TB
#3 snp4 animal3 CA DF
这可以通过dplyr/tidyr
使用与@David Arenburg的帖子中类似的方法来完成。
library(dplyr)
library(tidyr)
bind_rows(add_rownames(dfA), add_rownames(dfB)) %>%
gather(Var, Val, -rowname) %>%
group_by(rowname, Var) %>%
filter(n_distinct(Val)>1) %>%
mutate(id = 1:2) %>%
spread(id, Val)
# rowname Var 1 2
# (chr) (chr) (chr) (chr)
#1 snp2 animal3 TT TB
#2 snp4 animal2 CA DF
#3 snp4 animal3 CA DF