我用R写了一段代码来计算一些数据的累积总和。它有效。问题是,我需要"融化"25,000个数字X 12个月,所以我最终得到300,000行(每个月都会有大约2000x12(。前六行是重新创建我的表格示例(一个巨大的 excel 文件(。然后做了一些魔术来将东西转换为正确的格式,最后我有这个双 for 循环,它根据它是否是双倍的"PDRcount"来计算每个月的总和。当我在我的真实数据上尝试时,循环需要 6 小时......如何更快地完成此操作?
library(reshape2)
PDR <- (c( 1,2,3,4,5,2))
START <- as.Date(c("2008-01-01","2007-01-01","2010-01-01","2011-01-01","2017-02-01","2017-03-01"))
SWITCHOUT <- as.Date(c(NA, "2017-02-28", NA, NA, "2017-03-31",NA))
JAN17 <- (c(100,124,165,178,0,0))
FEB17 <- (c(101,125,133,178,170,0))
MAR17 <- (c(99,0,165,180,166,99))
APR17 <- (c(100,0,156,178,0,78))
alldata <- data.frame(PDR=PDR,
START=START,
SWITCHOUT=SWITCHOUT,
JAN17=JAN17,
FEB17=FEB17,
MAR17=MAR17,
APR17=APR17)
## count PDR occurrences
alldata$PDRcount <- ave(alldata$PDR,alldata$PDR,FUN=length)
alldata$PDRcount <- as.numeric(alldata$PDRcount)
crossdata<-melt(alldata,id=(c("PDR", "START","SWITCHOUT","PDRcount" )))
colnames(crossdata) <- c("PDR","START","SWITCHOUT","PDRcount","MONTH","SMC")
## transform levels to date format
levels(crossdata$MONTH)[1] <- "2017-01-01"
levels(crossdata$MONTH)[2] <- "2017-02-01"
levels(crossdata$MONTH)[3] <- "2017-03-01"
levels(crossdata$MONTH)[4] <- "2017-04-01"
crossdata$MONTH <- as.Date(crossdata$MONTH,format = "%Y-%m-%d" )
for (pdr in crossdata[,"PDR"]){
maxPDR <- max(crossdata$PDRcount[crossdata$PDR == pdr])
dates <- unique(crossdata$START[crossdata$PDR == pdr])
for (i in 1:maxPDR) {
CumSum <- cumsum( crossdata$SMC[crossdata$PDR == pdr & crossdata$START == dates[i]] )
crossdata$SMCcum[crossdata$PDR == pdr & crossdata$START == dates[i] & crossdata$MONTH == "2017-01-01"] <- CumSum[1]
crossdata$SMCcum[crossdata$PDR == pdr & crossdata$START == dates[i] & crossdata$MONTH == "2017-02-01"] <- CumSum[2]
crossdata$SMCcum[crossdata$PDR == pdr & crossdata$START == dates[i] & crossdata$MONTH == "2017-03-01"] <- CumSum[3]
crossdata$SMCcum[crossdata$PDR == pdr & crossdata$START == dates[i] & crossdata$MONTH == "2017-04-01"] <- CumSum[4]
}
}
已编辑:抱歉出现错误...
您不断覆盖结果。一个明显的改进是遍历unique(crossdata[,"PDR"])
而不是为每一行调用循环。
我不确定您的内部循环是否提供了预期的结果,maxPDR > 1
您不断覆盖START
与maxPDR
dates
条目匹配的值 - 请注意,您没有对dates
进行排序,因此不能保证dates[maxPDR]
是最大(最新(条目。
我在dplyr
中编写了一个替代解决方案,其中包含两个步骤来简化转换为所需格式的过程。
alldata <- data.frame(PDR=PDR, START=START, SWITCHOUT=SWITCHOUT, JAN17=JAN17,
FEB17=FEB17, MAR17=MAR17, APR17=APR17)
library(dplyr)
library(tidyr) # to reshape the data
crossdata_2 <- alldata %>%
gather(MONTH,SMC,ends_with("17")) %>%
mutate(MONTH = as.character(strptime(paste0(MONTH,"-01"), format = "%b%y-%d"))) %>%
# the following line adds your PDRcount but is unnecessary for further computation
group_by(PDR) %>% mutate(PDRcount = n_distinct(START)) %>%
group_by(PDR,START) %>% mutate(SMCcum = cumsum(SMC))
请注意,我计算每个PDR
和START
的cumsum()
。如果你只想要每个PDR
一个结果,你只需要添加一个适当的过滤器。
我想指出的是,strptime
中的缩写月份转换%b
是特定于区域设置的。要正常工作,您可能需要更改LC_TIME
。
这是一个部分答案。 我不明白"...基于它是否是双重的"PDR计数"。
这里是使用 dplyr
库的 PDR !=2 情况的部分答案。 我还通过在进行任何计算之前对交叉数据变量使用 dput 简化了数据输入。
crossdata1<-structure(list(PDR = c(1, 2, 3, 4, 5, 2, 1, 2, 3, 4, 5, 2, 1,
2, 3, 4, 5, 2, 1, 2, 3, 4, 5, 2),
START = structure(c(13879, 13514, 14610, 14975, 17198, 17226, 13879, 13514, 14610, 14975,
17198, 17226, 13879, 13514, 14610, 14975, 17198, 17226, 13879,
13514, 14610, 14975, 17198, 17226), class = "Date"),
SWITCHOUT = structure(c(NA, 17225, NA, NA, 17256, NA, NA, 17225, NA, NA, 17256, NA, NA, 17225,
NA, NA, 17256, NA, NA, 17225, NA, NA, 17256, NA), class = "Date"),
PDRcount = c(1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2),
MONTH = structure(c(17167, 17167,
17167, 17167, 17167, 17167, 17198, 17198, 17198, 17198, 17198,
17198, 17226, 17226, 17226, 17226, 17226, 17226, 17257, 17257,
17257, 17257, 17257, 17257), class = "Date"),
SMC = c(100, 124, 165, 178, 0, 0, 101, 125, 133, 178, 170, 0, 99, 0, 165,
180, 166, 99, 100, 0, 156, 178, 0, 78)),
row.names = c(NA, -24L), .Names = c("PDR", "START", "SWITCHOUT", "PDRcount", "MONTH", "SMC"),
class = "data.frame")
#test to see if starting data is the same
identical(crossdata, crossdata1)
library(dplyr)
#group by and add the cumsum column to answer dataframe
ans<-group_by(crossdata1, PDR) %>%
mutate(SMCcum = cumsum(SMC))
#rows where the 2 final dataframes do not match
crossdata[-which(crossdata$SMCcum== ans$SMCcum),]
如果应用其他过滤器来删除"...双重"PDR计数"与否"适用。
我发现这篇文章很有帮助:使用 dplyr 分组数据中的累积量
祝你好运。