我有一个如下所示的数据帧。
+---+---+-----+
|uId| Id| sum |
+---+---+-----+
| 3| 1| 1.0|
| 7| 1| 1.0|
| 1| 2| 3.0|
| 1| 1| 1.0|
| 6| 5| 1.0|
使用上面的数据帧,我想在下面生成新的数据帧 Sum
列应该是:-
例如:
For uid=3 and id=1, my sum column value should be (old sum value * 1 / count of ID(1)) I.e.
1.0*1/3=0.333
For uid=7 and id=1, my sum column value should be (old sum value * 1 / count of ID(1)) I.e.
1.0*1/3=0.333
For uid=1 and id=2, my sum column value should be (old sum value * 1 / count of ID(1)) I.e.
3.0*1/1=3.0
For uid=6 and id=5, my sum column value should be (old sum value * 1 / count of ID(1)) I.e.
1.0*1/1=1.0
我的最终输出应该是:
+---+---+---------+
|uId| Id| sum |
+---+---+---------+
| 3| 1| 0.33333|
| 7| 1| 0.33333|
| 1| 2| 3.0 |
| 1| 1| 0.3333 |
| 6| 5| 1.0 |
您可以使用
Window
函数获取每组id
列的count
,最后使用该计数除以原始sum
import org.apache.spark.sql.expressions.Window
val windowSpec = Window.partitionBy("id")
import org.apache.spark.sql.functions._
df.withColumn("sum", $"sum"/count("id").over(windowSpec))
您应该将最终dataframe
为
+---+---+------------------+
|uId|Id |sum |
+---+---+------------------+
|3 |1 |0.3333333333333333|
|7 |1 |0.3333333333333333|
|1 |1 |0.3333333333333333|
|6 |5 |1.0 |
|1 |2 |3.0 |
+---+---+------------------+