我试图在Haskell中使用自动微分来解决非线性控制问题,但是有一些问题让它工作。我基本上有一个cost
函数,它应该在给定初始状态的情况下被优化。类型为:
data Reference a = Reference a deriving Functor
data Plant a = Plant a deriving Functor
optimize :: (RealFloat a) => Reference a -> Plant a -> [a] -> [[a]]
optimize ref plant initialInputs = gradientDescent (cost ref plant) initialInputs
cost :: (RealFloat a) => Reference a -> Plant a -> [a] -> a
cost = ...
这会导致以下错误消息:
Couldn't match expected type `Reference
(Numeric.AD.Internal.Reverse.Reverse s a)'
with actual type `t'
because type variable `s' would escape its scope
This (rigid, skolem) type variable is bound by
a type expected by the context:
Data.Reflection.Reifies s Numeric.AD.Internal.Reverse.Tape =>
[Numeric.AD.Internal.Reverse.Reverse s a]
-> Numeric.AD.Internal.Reverse.Reverse s a
at test.hs:13:5-50
Relevant bindings include
initialInputs :: [a] (bound at test.hs:12:20)
ref :: t (bound at test.hs:12:10)
optimize :: t -> t1 -> [a] -> [[a]] (bound at test.hs:12:1)
In the first argument of `cost', namely `ref'
In the first argument of `gradientDescent', namely
`(cost ref plant)'
我甚至不确定我是否正确理解了这个错误。是否,ref
和plant
的类型需要访问s
,这是gradientDescent
的第一个参数的范围内?
这个可行吗?在寻找解决方案时,我尝试将问题简化为最小的示例,并发现以下定义会产生类似的错误消息:
optimize f inputs = gradientDescent f inputs
这看起来很奇怪,因为optimize = gradientDescent
不会产生任何错误。
cost ref plant
的类型为[a] -> a
,其中a
与optimize
的签名中的a
相同
optimize :: (RealFloat a) => Reference a -> Plant a -> [a] -> [[a]]
^ ^
| ------------
------------------v v
optimize ref plant initialInputs = gradientDescent (cost ref plant) initialInputs
^ ^
----------------------- |
v v---------------
cost :: (RealFloat a) => Reference a -> Plant a -> [a] -> a
cost = ...
但是gradientDescent
的类型是
gradientDescent :: (Traversable f, Fractional a, Ord a) =>
(forall s. Reifies s Tape => f (Reverse s a) -> Reverse s a) ->
f a -> [f a]
gradientDescent
的第一个参数需要能够取[Reverse s a]
(对于任何 s
)并返回Reverse s a
,但cost ref plant
只能取[a]
并返回a
。
由于Reference
和Plant
都是Functor
s,可以将ref
和plant
从Reference a
和Plant a
转换为Reference (Reverse s a)
和Plant (Reverse s a)
,通过fmap
替换auto
。
optimize :: (RealFloat a) => Reference a -> Plant a -> [a] -> [[a]]
optimize ref plant initialInputs = gradientDescent (cost (fmap auto ref) (fmap auto plant)) initialInputs