我在下面写了代码来使用多项式回归。我能够拟合模型,但无法预测!!
def polynomial_function(power=5, random_state=9):
global X_train
global y_train
X_train = X_train[['item_1','item_2','item_3','item_4']]
rng = np.random.RandomState(random_state)
poly = PolynomialFeatures(degree=power, include_bias=False)
linreg = LinearRegression(normalize=True)
new_X_train = poly.fit_transform(X_train)
linreg.fit(new_X_train, y_train)
new_x_test = np.array([4, 5, 6, 7]).reshape(1, -1)
print linreg.predict(new_x_test)
return linreg
linreg = polynomial_function()
我收到以下错误消息:
ValueError: shapes (1,4) and (125,) not aligned: 4 (dim 1) != 125 (dim 0)
错误发生在这里,
new_x_test = np.array([4, 5, 6, 7]).reshape(1, -1)
print linreg.predict(new_x_test)
我发现new_X_train的形状=(923,125)和new_x_test形状 = (1, 4)
这有什么关系?
当我尝试使用 (1, 4) 的形状进行预测时,算法是否尝试将其转换为不同的形状?
它是否试图找出测试数据的 5 次多项式?
我正在尝试学习多项式回归,谁能解释一下发生了什么?
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
pipeline = Pipeline([
('poly', PolynomialFeatures(degree=5, include_bias=False)),
('linreg', LinearRegression(normalize=True))
])
pipeline.fit(X_train, y_train)
pipeline.predict(np.array([4, 5, 6, 7]).reshape(1, -1))