我试图在r中复制交易策略和回试,但是,我在tq_transmute()函数上有一个小问题。如有任何帮助,不胜感激。
所以,我有下面的代码,我现在已经写了:
#Importing the etfs data
symbols<- c("SPY","XLF","XLE")
start<-as.Date("2000-01-01")
end<- as.Date("2018-12-31")
price_data<- lapply(symbols, function(symbol){
etfs<-as.data.frame(getSymbols(symbol,src="yahoo", from=start, to= end,
auto.assign = FALSE))
colnames(etfs)<- c("Open", "High","Low","Close","volume","Adjusted")
etfs$Symbol<- symbol
etfs$Date<- rownames(etfs)
etfs
})
# Next, I used do.call() with rbind() to combine the data into a single data frame
etfs_df<- do.call(rbind, price_data)
#This because of POSIXct error
daily_price<- etfs_df %>%
mutate(Date=as.Date(Date, frac=1))
# I have deleted some columns of the table as my work only concerned the "Adjusted" column.
#So, until now we have:
head(daily_price)
Adjusted Symbol Date
1 98.14607 SPY 2000-01-03
2 94.30798 SPY 2000-01-04
3 94.47669 SPY 2000-01-05
4 92.95834 SPY 2000-01-06
5 98.35699 SPY 2000-01-07
6 98.69440 SPY 2000-01-10
#Converting the daily adjusted price to monthly adjusted price
monthly_price<-
tq_transmute(daily_price,select = Adjusted, mutate_fun = to.monthly, indexAt = "lastof")
head(monthly_price)
# And now, I get the following table:
# A tibble: 6 x 2
Date Adjusted
<date> <dbl>
1 2000-01-31 16.6
2 2000-02-29 15.9
3 2000-03-31 17.9
4 2000-04-30 17.7
5 2000-05-31 19.7
6 2000-06-30 18.6
所以,正如你所看到的,日期和调整后的价格已经成功地转换为每月的数字,但我的符号栏已经消失了。谁能告诉我为什么会发生这种情况,我怎么把它拿回来?
谢谢。
按Symbol
分组,应用tq_transmute
。
library(dplyr)
library(quantmod)
library(tidyquant)
monthly_price <- daily_price %>%
group_by(Symbol) %>%
tq_transmute(daily_price,select = Adjusted,
mutate_fun = to.monthly, indexAt = "lastof")
# Symbol Date Adjusted
# <chr> <date> <dbl>
# 1 SPY 2000-01-31 94.2
# 2 SPY 2000-02-29 92.7
# 3 SPY 2000-03-31 102.
# 4 SPY 2000-04-30 98.2
# 5 SPY 2000-05-31 96.6
# 6 SPY 2000-06-30 98.5
# 7 SPY 2000-07-31 97.0
# 8 SPY 2000-08-31 103.
# 9 SPY 2000-09-30 97.6
#10 SPY 2000-10-31 97.2
# … with 674 more rows
我会这样做:
symbols <- c("SPY", "XLF", "XLE")
start <- as.Date("2000-01-01")
end <- as.Date("2018-12-31")
# Environment to hold data
my_data <- new.env()
# Tell getSymbols() to load the data into 'my_data'
getSymbols(symbols, from = start, to = end, env = my_data)
# Combine all the adjusted close prices into one xts object
price_data <- Reduce(merge, lapply(my_data, Ad))
# Remove "Adjusted" from column names
colnames(price_data) <- sub(".Adjusted", "", colnames(price_data), fixed = TRUE)
# Get the last price for each month
monthly_data <- apply.monthly(price_data, last)
# Convert to a long data.frame
long_data <- fortify.zoo(monthly_data,
names = c("Date", "Symbol", "Adjusted"), melt = TRUE)