我有一个包含两列的数据框架,每列都包含列表。我想确定两列中列表之间的重叠。
例如:
df = pd.DataFrame({'one':[['a', 'b', 'c'], ['d', 'e', 'f'], ['h', 'i', 'j']],
'two':[['b', 'c', 'd'], ['f', 'g', 'h',], ['l', 'm', 'n']]})
one two
0 [a, b, c] [b, c, d]
1 [d, e, f] [f, g, h]
2 [h, i, j] [l, m, n]
最终,我希望它看起来像:
one two overlap
0 [a, b, c] [b, c, d] [b, c]
1 [d, e, f] [f, g, h] [f]
2 [h, i, j] [l, m, n] []
没有有效的向量方法来执行此操作,最快的方法将是具有set
相交的列表推导:
df['overlap'] = [list(set(a)&set(b)) for a,b in zip(df['one'], df['two'])]
输出:
one two overlap
0 [a, b, c] [b, c, d] [b, c]
1 [d, e, f] [f, g, h] [f]
2 [h, i, j] [l, m, n] []
这是一种使用applymap
将列表转换为集合并使用set.intersection
查找重叠的方法:
df.join(df.applymap(set).apply(lambda x: set.intersection(*x),axis=1).map(list).rename('overlap'))
使用pandas
Pandas
的方法是这样的-
f = lambda row: list(set(row['one']).intersection(row['two']))
df['overlap'] = df.apply(f,1)
print(df)
one two overlap
0 [a, b, c] [b, c, d] [b, c]
1 [d, e, f] [f, g, h] [f]
2 [h, i, j] [l, m, n] []
apply函数逐行查找(axis=1),并在列one
和列two
的列表中找到set.intersection()
。然后以列表的形式返回结果。
Apply
方法不是最快的,但在我看来可读性很好。但既然你的问题没有提到速度作为一个标准,这不会是一个问题。
此外,您可以使用这两个表达式中的任何一个作为lambda函数,因为它们都执行相同的任务—
#Option 1:
f = lambda x: list(set(x['one']) & set(x['two']))
#Option 2:
f = lambda x: list(set(x['one']).intersection(x['two']))
使用Numpy
您也可以使用numpy方法np.intersect1d
以及2系列的映射。
import numpy as np
import pandas as pd
df['overlap'] = pd.Series(map(np.intersect1d, df['one'], df['two']))
print(df)
one two overlap
0 [a, b, c] [b, c, d] [b, c]
1 [d, e, f] [f, g, h] [f]
2 [h, i, j] [l, m, n] []
添加一些参考基准-
%timeit [list(set(a)&set(b)) for a,b in zip(df['one'], df['two'])] #list comprehension
%timeit df.apply(lambda x: list(set(x['one']).intersection(x['two'])),1) #apply 1
%timeit df.apply(lambda x: list(set(x['one']) & set(x['two'])),1) #apply 2
%timeit pd.Series(map(np.intersect1d, df['one'], df['two'])) #numpy intersect1d
6.99 µs ± 17.3 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
167 µs ± 830 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
166 µs ± 338 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
84.1 µs ± 270 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)