ValueError:必须至少包含一个标签和一个序列



我正在使用此笔记本,其中应用DocumentClassifier部分更改如下。

Jupyter实验室,内核:conda_mxnet_latest_p37

错误似乎是ML标准实践响应。但是,我传递/创建与原始代码相同的参数和变量名。所以这与它们在我的代码中的值有关。


我的代码:

with open('filt_gri.txt', 'r') as filehandle:
tags = [current_place.rstrip() for current_place in filehandle.readlines()]
doc_classifier = TransformersDocumentClassifier(model_name_or_path="cross-encoder/nli-distilroberta-base",
task="zero-shot-classification",
labels=tags,
batch_size=16)
# convert to Document using a fieldmap for custom content fields the classification should run on
docs_to_classify = [Document.from_dict(d) for d in docs_sliding_window]
# classify using gpu, batch_size makes sure we do not run out of memory
classified_docs = doc_classifier.predict(docs_to_classify)
# let's see how it looks: there should be a classification result in the meta entry containing labels and scores.
print(classified_docs[0].to_dict())
all_docs = convert_files_to_dicts(dir_path=doc_dir)
preprocessor_sliding_window = PreProcessor(split_overlap=3,
split_length=10,
split_respect_sentence_boundary=False,
split_by='passage')

输出:

INFO - haystack.modeling.utils -  Using devices: CUDA
INFO - haystack.modeling.utils -  Number of GPUs: 1
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-11-77eb98038283> in <module>
14 
15 # classify using gpu, batch_size makes sure we do not run out of memory
---> 16 classified_docs = doc_classifier.predict(docs_to_classify)
17 
18 # let's see how it looks: there should be a classification result in the meta entry containing labels and scores.
~/anaconda3/envs/mxnet_latest_p37/lib/python3.7/site-packages/haystack/nodes/document_classifier/transformers.py in predict(self, documents)
137         batches = self.get_batches(texts, batch_size=self.batch_size)
138         if self.task == 'zero-shot-classification':
--> 139             batched_predictions = [self.model(batch, candidate_labels=self.labels, truncation=True) for batch in batches]
140         elif self.task == 'text-classification':
141             batched_predictions = [self.model(batch, return_all_scores=self.return_all_scores, truncation=True) for batch in batches]
~/anaconda3/envs/mxnet_latest_p37/lib/python3.7/site-packages/haystack/nodes/document_classifier/transformers.py in <listcomp>(.0)
137         batches = self.get_batches(texts, batch_size=self.batch_size)
138         if self.task == 'zero-shot-classification':
--> 139             batched_predictions = [self.model(batch, candidate_labels=self.labels, truncation=True) for batch in batches]
140         elif self.task == 'text-classification':
141             batched_predictions = [self.model(batch, return_all_scores=self.return_all_scores, truncation=True) for batch in batches]
~/anaconda3/envs/mxnet_latest_p37/lib/python3.7/site-packages/transformers/pipelines/zero_shot_classification.py in __call__(self, sequences, candidate_labels, hypothesis_template, multi_label, **kwargs)
151             sequences = [sequences]
152 
--> 153         outputs = super().__call__(sequences, candidate_labels, hypothesis_template)
154         num_sequences = len(sequences)
155         candidate_labels = self._args_parser._parse_labels(candidate_labels)
~/anaconda3/envs/mxnet_latest_p37/lib/python3.7/site-packages/transformers/pipelines/base.py in __call__(self, *args, **kwargs)
758 
759     def __call__(self, *args, **kwargs):
--> 760         inputs = self._parse_and_tokenize(*args, **kwargs)
761         return self._forward(inputs)
762 
~/anaconda3/envs/mxnet_latest_p37/lib/python3.7/site-packages/transformers/pipelines/zero_shot_classification.py in _parse_and_tokenize(self, sequences, candidate_labels, hypothesis_template, padding, add_special_tokens, truncation, **kwargs)
92         Parse arguments and tokenize only_first so that hypothesis (label) is not truncated
93         """
---> 94         sequence_pairs = self._args_parser(sequences, candidate_labels, hypothesis_template)
95         inputs = self.tokenizer(
96             sequence_pairs,
~/anaconda3/envs/mxnet_latest_p37/lib/python3.7/site-packages/transformers/pipelines/zero_shot_classification.py in __call__(self, sequences, labels, hypothesis_template)
25     def __call__(self, sequences, labels, hypothesis_template):
26         if len(labels) == 0 or len(sequences) == 0:
---> 27             raise ValueError("You must include at least one label and at least one sequence.")
28         if hypothesis_template.format(labels[0]) == hypothesis_template:
29             raise ValueError(
ValueError: You must include at least one label and at least one sequence.

原始代码:

doc_classifier = TransformersDocumentClassifier(model_name_or_path="cross-encoder/nli-distilroberta-base",
task="zero-shot-classification",
labels=["music", "natural language processing", "history"],
batch_size=16
)
# ----------
# convert to Document using a fieldmap for custom content fields the classification should run on
docs_to_classify = [Document.from_dict(d) for d in docs_sliding_window]
# ----------
# classify using gpu, batch_size makes sure we do not run out of memory
classified_docs = doc_classifier.predict(docs_to_classify)
# ----------
# let's see how it looks: there should be a classification result in the meta entry containing labels and scores.
print(classified_docs[0].to_dict())

请让我知道,如果还有什么我应该添加到帖子/澄清。

阅读官方文档并分析调用.predict(docs_to_classify)时是否生成错误。我建议您尝试进行基本测试,如使用参数labels = ["negative", "positive"],并更正是否是由外部文件的引起的,还应检查指示使用管道的位置。

pipeline = Pipeline()
pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipeline.add_node(component=doc_classifier, name='DocClassifier', inputs=['Retriever'])

我也有同样的问题。在我的案例中,是针对含有NAN和len() = 0的项目。

我建议您在使用数据之前先清理数据。

在文件中这样说:

def __call__(self, sequences, labels, hypothesis_template):
if len(labels) == 0 or len(sequences) == 0:

在此处输入图像描述

相关内容

  • 没有找到相关文章

最新更新