C++找到所有的基数,使得这些基数中的P以Q的十进制表示结束



给定两个十进制数字p和Q。查找所有基,使得这些基中的P以Q的十进制表示结束。

#include <bits/stdc++.h>
using namespace std;
void convert10tob(int N, int b)
{
if (N == 0)
return;
int x = N % b;
N /= b;
if (x < 0)
N += 1;
convert10tob(N, b);
cout<< x < 0 ? x + (b * -1) : x;
return;
}
int countDigit(long long n) 
{ 
if (n == 0) 
return 0; 
return 1 + countDigit(n / 10); 
} 
int main()
{
long P, Q;
cin>>P>>Q;
n = countDigit(Q);
return 0;
}

我脑海中的想法是:我将p转换为其他碱基,并检查P % pow(10, numberofdigits(B)) == B是否为真。

好吧,我可以检查一些有限数量的基数,但我怎么知道在哪里(在什么基数之后)停止检查。我被困在这里了。

为了更清楚,这里有一个例子:对于P=71,Q=13,答案应该是684

我如何知道在哪里(在什么基数之后)停止检查

最终,基数将变得足够大,p将用比表示Q所需的小数位数更少的数字来表示。

考虑到产生p表示的第一个基数,可以找到一个更严格的极限,该表示比Q的小数位数少。例如(71)10=(12)69

下面的代码显示了一个可能的实现。

#include <algorithm>
#include <cassert>
#include <iterator>
#include <vector>
auto digits_from( size_t n, size_t base )
{
std::vector<size_t> digits;
while (n != 0) {
digits.push_back(n % base);
n /= base;
}
if (digits.empty())
digits.push_back(0);  
return digits;
}

auto find_bases(size_t P, size_t Q)
{
std::vector<size_t> bases;
auto Qs = digits_from(Q, 10);
// I'm using the digit with the max value to determine the starting base
auto it_max = std::max_element(Qs.cbegin(), Qs.cend());
assert(it_max != Qs.cend());
for (size_t base = *it_max + 1; ; ++base)
{
auto Ps = digits_from(P, base);
// We can stop when the base is too big
if (Ps.size() < Qs.size() ) {
break;
}
// Compare the first digits of P in this base with the ones of P
auto p_rbegin = std::reverse_iterator<std::vector<size_t>::const_iterator>(
Ps.cbegin() + Qs.size()
);
auto m = std::mismatch(Qs.crbegin(), Qs.crend(), p_rbegin, Ps.crend());
// All the digits match  
if ( m.first == Qs.crend() ) {
bases.push_back(base);
}
// The digits form a number which is less than the one formed by Q
else if ( Ps.size() == Qs.size()  &&  *m.first > *m.second ) {
break;
}
}
return bases;
}

int main()
{
auto bases = find_bases(71, 13);
assert(bases[0] == 4  &&  bases[1] == 68);
}

编辑

正如One Lyner所指出的,以前的蛮力算法错过了一些拐角情况,并且对于Q的较大值来说是不切实际的。在下文中,我将介绍一些可能的优化。

让我们把m称为Q的小数位数,我们想要

(P)b=…+qnbn+qn-1bn-1+…+q1b1+q0其中m=n+1

根据q的位数,可以探索不同的方法

Q只有一个数字(因此m=1)

前面的方程式简化为

(P)b=q0
  • P<q0没有解决方案
  • 如果P=q0所有大于min的值(q0,2)都是有效的解
  • Pq0时,我们必须检查[2,P-q0]中的所有碱基(不是真正的all,请参阅下一项)

Q只有两位数字(因此m=2)

我们可以注意到,当我们搜索p=p-q0的除数时,我们只需要测试

bsqrt=sqrt(p)=sqrt
如果p%b==0而p/b是p

使用涉及素数检测的更复杂算法可以进一步限制候选者的数量,如One Lyner的答案所示。这将大大减少搜索P较大值的运行时间。

在下面的测试程序中,当m<=2.

Q的小数位数大于2(因此m>2)

我们可以引入另外两个极限值

blim=P

的第m个根它是产生P表示的最后一个基数,其位数多于Q。之后,只有一个基数,这样

(P)b=qnbn+qn-1bn-1+…+q1b1+q0

随着p(和m)的增加,blim变得越来越小于bsqrt>

我们可以将除数的搜索限制在blim,然后应用诸如牛顿法或简单平分法的寻根算法,在几个步骤中找到最后的解(如果存在)。

如果涉及大值并且使用固定大小的数字类型,则溢出是一个具体的风险。

在下面的程序中(诚然相当复杂),我试图避免它检查产生各种根的计算,并在最后一步使用简单的beisection方法,该方法不计算多项式(就像牛顿步骤需要的那样),只比较数字。

#include <algorithm>
#include <cassert>
#include <cmath>
#include <climits>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <limits>
#include <optional>
#include <type_traits>
#include <vector>
namespace num {
template< class T 
, typename std::enable_if_t<std::is_integral_v<T>, int> = 0 >
auto abs(T value)
{
if constexpr ( std::is_unsigned_v<T> ) {
return value;
}
using U = std::make_unsigned_t<T>;
// See e.g. https://stackoverflow.com/a/48612366/4944425
return U{ value < 0 ? (U{} - value) : (U{} + value) };
}

template <class T>
constexpr inline T sqrt_max {
std::numeric_limits<T>::max() >> (sizeof(T) * CHAR_BIT >> 1)
};
constexpr bool safe_sum(std::uintmax_t& a, std::uintmax_t b)
{
std::uintmax_t tmp = a + b;
if ( tmp <= a )
return false;
a = tmp;
return true;
}
constexpr bool safe_multiply(std::uintmax_t& a, std::uintmax_t b)
{
std::uintmax_t tmp = a * b;
if ( tmp / a != b )
return false;
a = tmp;
return true;
}
constexpr bool safe_square(std::uintmax_t& a)
{
if ( sqrt_max<std::uintmax_t> < a )
return false;
a *= a;
return true;
}
template <class Ub, class Ue>
auto safe_pow(Ub base, Ue exponent)
-> std::enable_if_t< std::is_unsigned_v<Ub> && std::is_unsigned_v<Ue>
, std::optional<Ub> >
{
Ub power{ 1 };
for (;;) {
if ( exponent & 1 ) {
if ( !safe_multiply(power, base) )
return std::nullopt;
}
exponent >>= 1;
if ( !exponent )
break;
if ( !safe_square(base) )
return std::nullopt;
}
return power;
}
template< class Ux, class Un>
auto nth_root(Ux x, Un n)
-> std::enable_if_t< std::is_unsigned_v<Ux> && std::is_unsigned_v<Un>
, Ux >
{
if ( n <= 1 ) {
if ( n < 1 ) {
std::cerr << "Domain error.n";
return 0;
}
return x;
}
if ( x <= 1 )
return x;
std::uintmax_t nth_root = std::floor(std::pow(x, std::nextafter(1.0 / n, 1)));
// Rounding errors and overflows are possible
auto test = safe_pow(nth_root, n);
if (!test  ||  test.value() > x )
return nth_root - 1;
test = safe_pow(nth_root + 1, n);
if ( test  &&  test.value() <= x ) {
return nth_root + 1;
}
return nth_root;
}
constexpr inline size_t lowest_base{ 2 };
template <class N, class D = N>
auto to_digits( N n, D base )
{
std::vector<D> digits;
while ( n ) {
digits.push_back(n % base);
n /= base;
}
if (digits.empty())
digits.push_back(D{});  
return digits;
}
template< class T >
T find_minimum_base(std::vector<T> const& digits)
{
assert( digits.size() );
return std::max( lowest_base
, digits.size() > 1 
? *std::max_element(digits.cbegin(), digits.cend()) + 1 
: digits.back() + 1);
}
template< class U, class Compare >
auto find_root(U low, Compare cmp) -> std::optional<U>
{
U high { low }, z{ low };
int result{};
while( (result = cmp(high)) < 0 ) {
z = high;
high *= 2;
}
if ( result == 0 ) {
return z;
}
low = z;
while ( low + 1 < high ) {
z = low + (high - low) / 2;
result = cmp(z);
if ( result == 0 ) {
return z;
}
if ( result < 0 )
low = z;
else if ( result > 0 )
high = z;
}
return std::nullopt;
}
namespace {
template< class NumberType > struct param_t
{
NumberType P, Q;
bool opposite_signs{};
public:
template< class Pt, class Qt >
param_t(Pt p, Qt q) : P{::num::abs(p)}, Q{::num::abs(q)}
{
if constexpr ( std::is_signed_v<Pt> )
opposite_signs = p < 0;
if constexpr ( std::is_signed_v<Qt> )
opposite_signs = opposite_signs != q < 0;
}
};
template< class NumberType > struct results_t
{
std::vector<NumberType> valid_bases;
bool has_infinite_results{};
};
template< class T >
std::ostream& operator<< (std::ostream& os, results_t<T> const& r)
{
if ( r.valid_bases.empty() )
os << "None.";
else if ( r.has_infinite_results )
os << "All the bases starting from " << r.valid_bases.back() << '.';
else {
for ( auto i : r.valid_bases )
os << i << ' '; 
}
return os;
}
struct prime_factors_t
{ 
size_t factor, count; 
};

} // End of unnamed namespace
auto prime_factorization(size_t n) 
{ 
std::vector<prime_factors_t> factors; 
size_t i = 2; 
if (n % i == 0) { 
size_t count = 0; 
while (n % i == 0) { 
n /= i; 
count += 1;
} 
factors.push_back({i, count}); 
} 
for (size_t i = 3; i * i <= n; i += 2) { 
if (n % i == 0) { 
size_t count = 0; 
while (n % i == 0) { 
n /= i; 
count += 1;
} 
factors.push_back({i, count}); 
} 
} 
if (n > 1) { 
factors.push_back({n, 1ull}); 
} 
return factors;
}
auto prime_factorization_limited(size_t n, size_t max) 
{ 
std::vector<prime_factors_t> factors; 
size_t i = 2; 
if (n % i == 0) { 
size_t count = 0; 
while (n % i == 0) { 
n /= i; 
count += 1;
} 
factors.push_back({i, count}); 
} 
for (size_t i = 3; i * i <= n  &&  i <= max; i += 2) { 
if (n % i == 0) { 
size_t count = 0; 
while (n % i == 0) { 
n /= i; 
count += 1;
} 
factors.push_back({i, count}); 
} 
} 
if (n > 1  &&  n <= max) { 
factors.push_back({n, 1ull}); 
} 
return factors;
}
template< class F >
void apply_to_all_divisors( std::vector<prime_factors_t> const& factors
, size_t low, size_t high
, size_t index, size_t divisor, F use )
{
if ( divisor > high )
return;
if ( index == factors.size() ) { 
if ( divisor >= low ) 
use(divisor);
return;
}
for ( size_t i{}; i <= factors[index].count; ++i) { 
apply_to_all_divisors(factors, low, high, index + 1, divisor, use); 
divisor *= factors[index].factor; 
}         
}
class ValidBases
{
using number_t = std::uintmax_t;
using digits_t = std::vector<number_t>;
param_t<number_t> param_;
digits_t Qs_;
results_t<number_t> results_;
public:
template< class Pt, class Qt >
ValidBases(Pt p, Qt q)
: param_{p, q}
{
Qs_ = to_digits(param_.Q, number_t{10});
search_bases();
}
auto& operator() () const { return results_; }
private:
void search_bases();
bool is_valid( number_t candidate );
int compare( number_t candidate );
};
void ValidBases::search_bases()
{
if ( param_.opposite_signs )
return;
if ( param_.P < Qs_[0] )
return;
number_t low = find_minimum_base(Qs_);
if ( param_.P == Qs_[0] ) {
results_.valid_bases.push_back(low);
results_.has_infinite_results = true;
return;
}
number_t P_ = param_.P - Qs_[0];
auto add_if_valid = [this](number_t x) mutable {
if ( is_valid(x) )
results_.valid_bases.push_back(x);
}; 
if ( Qs_.size() <= 2 ) {
auto factors = prime_factorization(P_);
apply_to_all_divisors(factors, low, P_, 0, 1, add_if_valid);
std::sort(results_.valid_bases.begin(), results_.valid_bases.end());
}
else {
number_t lim = std::max( nth_root(param_.P, Qs_.size())
, lowest_base );
auto factors = prime_factorization_limited(P_, lim);
apply_to_all_divisors(factors, low, lim, 0, 1, add_if_valid);
auto cmp = [this](number_t x) {
return compare(x);
};
auto b = find_root(lim + 1, cmp);
if ( b )
results_.valid_bases.push_back(b.value());
}
}
// Called only when P % candidate == Qs[0]
bool ValidBases::is_valid( number_t candidate )
{
size_t p = param_.P;
auto it = Qs_.cbegin();
while ( ++it != Qs_.cend() ) {
p /= candidate;
if ( p % candidate != *it )
return false;
}
return true;
}
int ValidBases::compare( number_t candidate )
{
auto Ps = to_digits(param_.P, candidate);
if ( Ps.size() < Qs_.size() )
return 1;
auto [ip, iq] = std::mismatch( Ps.crbegin(), Ps.crend()
, Qs_.crbegin());
if ( iq == Qs_.crend() )
return 0;
if ( *ip < *iq )
return 1;
return -1;                           
}
} // End of namespace 'num'
int main()
{
using Bases = num::ValidBases;
std::vector<std::pair<int, int>> tests {
{0,0}, {9, 9}, {3, 4}, {4, 0}, {4, 2}, {71, -4}, {71, 3}, {-71, -13}, 
{36, 100}, {172448, 12}, {172443, 123}
};
std::cout << std::setw(22) << "P" << std::setw(12) << "Q"
<< "     valid basesnn";
for (auto sample : tests) {
auto [P, Q] = sample;
Bases a(P, Q);
std::cout << std::setw(22) << P << std::setw(12) << Q
<< "     " << a() << 'n';        
}
std::vector<std::pair<size_t, size_t>> tests_2 {
{49*25*8*81*11*17, 120}, {4894432871088700845ull, 13}, {18401055938125660803ull, 13},
{9249004726666694188ull, 19},  {18446744073709551551ull, 11}
};
for (auto sample : tests_2) {
auto [P, Q] = sample;
Bases a(P, Q);
std::cout << std::setw(22) << P << std::setw(12) << Q
<< "     " << a() << 'n';        
}
}     

可在此处测试。输出示例:

P Q有效基0 0从2开始的所有基数。9 9所有垒从10开始。3 4无。4 0 2 44.2无。71-4无。71 3 4 17 34 68-71-13 4 6836 100 3 2 6172448 12 6 172446172443 123 4148440600 120 448944332871088700845 13 6 42 2212336518 48944328708874218401055938125660803 13 13 17 23 184010559381 256608009249004726666694188 19 924900472669669417918446744073709551551 11 2 184467440737 09551550

为了避免角情形P < 10P == Q具有无穷大基解,我假设您只对基B <= P感兴趣。

请注意,要使最后一个数字具有正确的值,您需要P % B == Q % 10相当于

B divides P - (Q % 10)

让我们利用这个事实来做一些更有效率的事情。

#include <vector>
std::vector<size_t> find_divisors(size_t P) {
// returns divisors d of P, with 1 < d <= P
std::vector<size_t> D{P};
for(size_t i = 2; i <= P/i; ++i)
if (P % i == 0) {
D.push_back(i);
D.push_back(P/i);
}
return D;
}
std::vector<size_t> find_bases(size_t P, size_t Q) {
std::vector<size_t> bases;
for(size_t B: find_divisors(P - (Q % 10))) {
size_t p = P, q = Q;
while (q) {
if ((p % B) != (q % 10)) // checks digits are the same
break;
p /= B;
q /= 10;
}
if (q == 0) // all digits were equal
bases.push_back(B);
}
return bases;
}
#include <cstdio>
int main(int argc, char *argv[]) {
size_t P, Q;
sscanf(argv[1], "%zu", &P);
sscanf(argv[2], "%zu", &Q);
for(size_t B: find_bases(P, Q))
printf("%zun", B);
return 0;
}

复杂性与查找P - (Q%10)的所有除数相同,但你不能指望更好,因为如果Q是一个个位数,那么这些正是解决方案。

小型基准:

> time ./find_bases 16285263 13
12
4035
16285260
0.00s user 0.00s system 54% cpu 0.005 total

较大的数字:

> time ./find_bases 4894432871088700845 13
6
42
2212336518
4894432871088700842
25.80s user 0.04s system 99% cpu 25.867 total

接下来,用一个更复杂但更快的实现来找到64位数字的所有除数。

#include <cstdio>
#include <map>
#include <numeric>
#include <vector>
std::vector<size_t> find_divisors(size_t P) {
// returns divisors d of P, with 1 < d <= P
std::vector<size_t> D{P};
for(size_t i = 2; i <= P/i; ++i)
if (P % i == 0) {
D.push_back(i);
D.push_back(P/i);
}
return D;
}
size_t mulmod(size_t a, size_t b, size_t mod) {
return (__uint128_t)a * b % mod;
}
size_t modexp(size_t base, size_t exponent, size_t mod)
{
size_t x = 1, y = base;
while (exponent) {
if (exponent & 1)
x = mulmod(x, y, mod);
y = mulmod(y, y, mod);
exponent >>= 1;
}
return x % mod;
}
bool deterministic_isprime(size_t p)
{
static const unsigned char bases[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Testing_against_small_sets_of_bases
if (p < 2)
return false;
if (p != 2 && p % 2 == 0)
return false;
size_t s = (p - 1) >> __builtin_ctz(p-1);
for (size_t i = 0; i < sizeof(bases); i++) {
size_t a = bases[i], temp = s;
size_t mod = modexp(a, temp, p);
while (temp != p - 1 && mod != 1 && mod != p - 1) {
mod = mulmod(mod, mod, p);
temp *= 2;
}
if (mod != p - 1 && temp % 2 == 0)
return false;
}
return true;
}
size_t abs_diff(size_t x, size_t y) {
return (x > y) ? (x - y) : (y - x);
}
size_t pollard_rho(size_t n, size_t x0=2, size_t c=1) {
auto f = [n,c](size_t x){ return (mulmod(x, x, n) + c) % n; };
size_t x = x0, y = x0, g = 1;
while (g == 1) {
x = f(x);
y = f(f(y));
g = std::gcd(abs_diff(x, y), n);
}
return g;
}
std::vector<std::pair<size_t, size_t>> factorize_small(size_t &P) {
std::vector<std::pair<size_t, size_t>> factors;
if ((P & 1) == 0) {
size_t ctz = __builtin_ctzll(P);
P >>= ctz;
factors.emplace_back(2, ctz);
}
size_t i;
for(i = 3; i <= P/i; i += 2) {
if (i > (1<<22))
break;
size_t multiplicity = 0;
while ((P % i) == 0) {
++multiplicity;
P /= i;
}
if (multiplicity)
factors.emplace_back(i, multiplicity);
}
if (P > 1 && i > P/i) {
factors.emplace_back(P, 1);
P = 1;
}
return factors;
}
std::vector<std::pair<size_t, size_t>> factorize_big(size_t P) {
auto factors = factorize_small(P);
if (P == 1)
return factors;
if (deterministic_isprime(P)) {
factors.emplace_back(P, 1);
return factors;
}
std::map<size_t, size_t> factors_map;
factors_map.insert(factors.begin(), factors.end());
size_t some_factor = pollard_rho(P);
for(auto i: {some_factor, P/some_factor})
for(auto const& [p, expo]: factorize_big(i))
factors_map[p] += expo;
return {factors_map.begin(), factors_map.end()};
}
std::vector<size_t> all_divisors(size_t P) {
std::vector<size_t> divisors{1};
for(auto const& [p, expo]: factorize_big(P)) {
size_t ppow = p, previous_size = divisors.size();
for(size_t i = 0; i < expo; ++i, ppow *= p)
for(size_t j = 0; j < previous_size; ++j)
divisors.push_back(divisors[j] * ppow);
}
return divisors;
}
std::vector<size_t> find_bases(size_t P, size_t Q) {
if (P <= (Q%10))
return {};
std::vector<size_t> bases;
for(size_t B: all_divisors(P - (Q % 10))) {
if (B == 1)
continue;
size_t p = P, q = Q;
while (q) {
if ((p % B) != (q % 10)) // checks digits are the same
break;
p /= B;
q /= 10;
}
if (q == 0) // all digits were equal
bases.push_back(B);
}
return bases;
}
int main(int argc, char *argv[]) {
std::vector<std::pair<size_t, size_t>> tests;
if (argc > 1) {
size_t P, Q;
sscanf(argv[1], "%zu", &P);
sscanf(argv[2], "%zu", &Q);
tests.emplace_back(P, Q);
} else {
tests.assign({
{0,0}, {9, 9}, {3, 4}, {4, 0}, {4, 2}, {71, 3}, {71, 13}, 
{36, 100}, {172448, 12}, {172443, 123},
{49*25*8*81*11*17, 120}, {4894432871088700845ull, 13}, {18401055938125660803ull, 13},
{9249004726666694188ull, 19}
});
}
for(auto & [P, Q]: tests) {
auto bases = find_bases(P, Q);
if (tests.size() > 1)
printf("%zu, %zu: ", P, Q);
if (bases.empty()) {
printf(" None");
} else {
for(size_t B: bases)
printf("%zu ", B);
}
printf("n");
}
return 0;
}

我们现在有:

> time ./find_bases
0, 0:  None
9, 9:  None
3, 4:  None
4, 0: 2 4 
4, 2:  None
71, 3: 4 17 34 68 
71, 13: 4 68 
36, 100: 2 3 6 
172448, 12: 6 172446 
172443, 123: 4 
148440600, 120: 4 
4894432871088700845, 13: 6 42 2212336518 4894432871088700842 
18401055938125660803, 13: 13 17 23 18401055938125660800 
9249004726666694188, 19: 9249004726666694179 9249004726666694179
0.09s user 0.00s system 96% cpu 0.093 total

尽可能快:)

(注意:如果Bob__给出答案,大约需要10秒)

相关内容

  • 没有找到相关文章

最新更新