由于tensorflow night对GPU的支持目前在Google Colab上已经中断,我正在尝试构建自己的docker镜像进行开发。但是,当我从tensorflow/models
安装object_detection
包时,我的夜间tensorflow包会被从object_detection
setup.py
作为依赖项引入的版本覆盖。
我在谷歌Colab中遵循了基本相同的步骤,但我每晚的tensorflow并没有被覆盖,所以我不确定我错过了什么。。。
这是我的Dockerfile
:
FROM tensorflow/tensorflow:nightly-gpu-jupyter
RUN python -c "import tensorflow as tf; print(f'Tensorflow version: {tf.__version__}')"
RUN apt-get install -y
curl
git
less
zip
RUN curl -L -O https://github.com/protocolbuffers/protobuf/releases/download/v3.11.4/protoc-3.11.4-linux-x86_64.zip && unzip protoc-3.11.4-linux-x86_64.zip
RUN cp bin/protoc /usr/local/bin
RUN git clone --depth 1 https://github.com/tensorflow/models
RUN cd models/research &&
protoc object_detection/protos/*.proto --python_out=. &&
cp object_detection/packages/tf2/setup.py . &&
python -m pip install .
RUN python -c "import tensorflow as tf; print(f'Tensorflow version: {tf.__version__}')"
我正在构建的:
docker pull tensorflow/tensorflow:nightly-gpu-jupyter
docker build --no-cache . -f models-tf-nightly.Dockerfile -t tf-nightly-models
第一个print()
显示:
Tensorflow version: 2.5.0-dev20201129
但第二个显示:
Tensorflow version: 2.3.1
在Google Colab中,我正在执行基本相同的步骤:
# Install the Object Detection API
%%bash
pip install tf-nightly-gpu
[[ -d models ]] || git clone --depth 1 https://github.com/tensorflow/models
cd models/research/
protoc object_detection/protos/*.proto --python_out=.
cp object_detection/packages/tf2/setup.py .
python -m pip install .
之后
import tensorflow as tf
print(tf.__version__)
打印2.5.0-dev20201201
因此,不知何故,我的Google Colab步骤保留了我每晚的Tensorflow安装,而在Docker上,它会被2.3.0覆盖。
如果在安装对象检测包之前查看pip list
,您会发现tf-nightly-gpu
已安装,但tensorflow
未安装。安装对象检测程序包时,tensorflow
程序包将作为依赖项引入。pip
认为它没有安装,所以安装了它。
解决这一问题的一种方法是欺骗pip-install,认为tensorflow
包已经安装。可以通过符号链接dist-packages
中的tf_nightly_gpu-VERSION.dist-info
目录来实现这一点。我在下面的Dockerfile中添加了这样做的行。在这篇文章的底部,我还包含了一个Dockerfile,它实现了一些最小化图像大小的最佳实践。
FROM tensorflow/tensorflow:nightly-gpu-jupyter
RUN python -c "import tensorflow as tf; print(f'Tensorflow version: {tf.__version__}')"
RUN apt-get install -y
curl
git
less
zip
# Trick pip into thinking that the 'tensorflow' package is installed.
# Installing `object_detection` attempts to install the 'tensorflow' package.
# Name the symlink with the suffix from tf_nightly_gpu.
WORKDIR /usr/local/lib/python3.6/dist-packages
RUN ln -s tf_nightly_gpu-* tensorflow-$(ls -d1 tf_nightly_gpu* | sed 's/tf_nightly_gpu-(.*)/1/')
WORKDIR /tf
RUN curl -L -O https://github.com/protocolbuffers/protobuf/releases/download/v3.11.4/protoc-3.11.4-linux-x86_64.zip && unzip protoc-3.11.4-linux-x86_64.zip
RUN cp bin/protoc /usr/local/bin
RUN git clone --depth 1 https://github.com/tensorflow/models
RUN cd models/research &&
protoc object_detection/protos/*.proto --python_out=. &&
cp object_detection/packages/tf2/setup.py . &&
python -m pip install .
RUN python -c "import tensorflow as tf; print(f'Tensorflow version: {tf.__version__}')"
这是一个Dockerfile,它导致图像稍小(0.22 GB未压缩(。值得注意的变化是清除apt
列表并在pip install
中使用--no-cache-dir
。
FROM tensorflow/tensorflow:nightly-gpu-jupyter
RUN python -c "import tensorflow as tf; print(f'Tensorflow version: {tf.__version__}')"
RUN apt-get install -y --no-install-recommends
ca-certificates
curl
git
less
zip &&
rm -rf /var/lib/apt/lists/*
# Trick pip into thinking that the 'tensorflow' package is installed.
# Installing `object_detection` attempts to install the 'tensorflow' package.
# Name the symlink with the suffix from tf_nightly_gpu.
WORKDIR /usr/local/lib/python3.6/dist-packages
RUN ln -s tf_nightly_gpu-* tensorflow-$(ls -d1 tf_nightly_gpu* | sed 's/tf_nightly_gpu-(.*)/1/')
WORKDIR /tf
RUN curl -L -O https://github.com/protocolbuffers/protobuf/releases/download/v3.11.4/protoc-3.11.4-linux-x86_64.zip &&
unzip protoc-3.11.4-linux-x86_64.zip &&
cp bin/protoc /usr/local/bin &&
rm -r protoc-3.11.4-linux-x86_64.zip bin/
# Upgrade pip.
RUN python -m pip install --no-cache-dir --upgrade pip
RUN git clone --depth 1 https://github.com/tensorflow/models
WORKDIR models/research
RUN protoc object_detection/protos/*.proto --python_out=. &&
cp object_detection/packages/tf2/setup.py . &&
python -m pip install --no-cache-dir .
RUN python -c "import tensorflow as tf; print(f'Tensorflow version: {tf.__version__}')"