我正在尝试使用FERET数据集运行GoogLeNet代码。当我运行代码时,我得到以下错误消息:
Traceback (most recent call last):
File "C:UsersJoshGPycharmProjectsGoogLeNetGoogLeNet5.py", line 221, in <module>
y_pred = (model.predict_classes(testX))
AttributeError: 'Functional' object has no attribute 'predict_classes''
谁能告诉我我做错了什么?此外,请教育我,以确保我的批量大小是正确的。我使用的图片尺寸为227 × 227。
我是python新手,所以请耐心等待我的理解。
下面是完整代码
# Python: 3.9
# keras: 2.2.4 for GoogLeNet on CIFAR-10
# Tensorflow :1.13.0
# cuda toolkit: 10.0
# cuDNN: 7.4.2
# scikit-learn 0.20.2
# Imutils
# NumPy
# set the matplotlib backend so figures can be saved in the background
import matplotlib
from matplotlib import pyplot
import matplotlib.pyplot as plt
# import packages
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score,
f1_score
from sklearn.preprocessing import LabelBinarizer
from pipeline.nn.conv import MiniGoogLeNet
from pipeline.callbacks import TrainingMonitor
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.optimizers import SGD
from keras.utils.np_utils import to_categorical
import tensorflow as tf
from keras.datasets import cifar10
from image_dataset_loader import load
import numpy as np
import argparse
from sklearn.model_selection import train_test_split
import os
from sklearn.utils.multiclass import unique_labels
# define the total number of epochs to train for along with initial learning rate
NUM_EPOCHS = 50
INIT_LR = 5e-3
def poly_decay(epoch):
# initialize the maximum number of epochs, base learning rate,
# and power of the polynomial
maxEpochs = NUM_EPOCHS
baseLR = INIT_LR
power = 1.0
# compute the new learning rate based on polynomial decay
alpha = baseLR * (1 - (epoch / float(maxEpochs))) ** power
# return the new learning rate
return alpha
# construct the argument parser
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="path to output model")
ap.add_argument("-o", "--output", required=True,
help="path to output directory (logs, plots, etc.)")
args = vars(ap.parse_args())
# load the training and testing data, converting the image from integers to
print("[INFO] loading FERET Dataset...")
# Josh Plan 1
path = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_FERET/Plan1-DL/Images_AlexNet"
imgPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_FERET/Plan1-DL/Images_AlexNet/Josh_Training_ADT_8I_24S_227"
testPath = "C:/Users/JoshG/PycharmProjects/Local-Binary-Patterns/Images_FERET/Plan1-DL/Images_AlexNet/Josh_Testing_ADT_24S_227"
# Keras library for CIFAR dataset
# from keras.datasets import cifar10
(trainX, trainY), (testX, testY) = load(path, [imgPath, testPath])
# ((trainX, trainY), (testX, testY)) = cifar10.load_data()
# Dimension of the datasets
#(trainX, trainY), (testX, testY) = load(path, [imgPath, testPath])
print('Train: X = %s, Y= %s' % (trainX.shape, trainY.shape))
print('Test: X = %s, y= %s' % (testX.shape, testY.shape))
# plot first few images
for i in range(9):
# define subplot
pyplot.subplot(330 + 1 + i)
# plot raw pixel datapython.exe googlenet_cifar10.py --model output/minigooglenet_cifar10.hdf5 --output output
pyplot.imshow(trainX[i])
# show the figure
pyplot.show()
# Print out first test to make sure we can see images
trainX = trainX.astype("float")
testX = testX.astype("float")
# apply mean subtraction to the data
mean = np.mean(trainX, axis=0)
trainX -= mean
testX -= mean
print('------------------- Test 1 -----------------------------')
print('')
temp = []
for label in trainY:
temp.append([label])
trainY = np.array(temp)
print('-------------------------4')
#print(trainY)
temp = []
for label in testY:
temp.append([label])
testY = np.array(temp)
print('-------------------------5')
#print(testY)
# Train-validation-test split
trainX, x_val, trainY, y_val = train_test_split(trainX, trainY, test_size=.12)
# Since we have 10 classes we should expect the shape[1] of trainY,y_val and testY to change from 1 to 10
trainY = to_categorical(trainY)
y_val = to_categorical(y_val)
testY = to_categorical(testY)
# Verifying the dimension after one hot encoding
print((trainX.shape, trainY.shape))
print((x_val.shape, y_val.shape))
print((testX.shape, testY.shape))
# Image Data Augmentation
train_generator = ImageDataGenerator(rotation_range=2, horizontal_flip=True, zoom_range=.1)
val_generator = ImageDataGenerator(rotation_range=2, horizontal_flip=True, zoom_range=.1)
test_generator = ImageDataGenerator(rotation_range=2, horizontal_flip=True, zoom_range=.1)
# Fitting the augmentation defined above to the data
train_generator.fit(trainX)
val_generator.fit(x_val)
test_generator.fit(testX)
# construct the image generator for data augmentation
aug = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1,
horizontal_flip=True, fill_mode="nearest")
# construct the set of callbacks
figPath = os.path.sep.join([args["output"], "{}.png".format(os.getpid())])
jsonPath = os.path.sep.join([args["output"], "{}.json".format(os.getpid())])
callbacks = [TrainingMonitor(figPath, jsonPath=jsonPath),
LearningRateScheduler(poly_decay)]
# initialize the optimizer and model
print("[INFO] compiling model...")
opt = SGD(lr=INIT_LR, momentum=0.9)
model = MiniGoogLeNet.build(width=227, height=227, depth=3, classes=24)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
model.evaluate(testX, testY)
# train the network
print("[INFO] training network...")
model.fit_generator(aug.flow(trainX, trainY, batch_size=8),
validation_data=(testX, testY), steps_per_epoch=len(trainX) // 64,
epochs=NUM_EPOCHS, callbacks=callbacks, verbose=1)
# Plotting the training and validation loss
f, ax = plt.subplots(1, 1) # Creates 2 subplots under 1 column
# Assigning the first subplot to graph training loss and validation loss
ax.plot(model.history.history['loss'], color='b', label='Training Loss')
ax.plot(model.history.history['val_loss'], color='r', label='Validation Loss')
plt.legend()
plt.show()
f, ax = plt.subplots(1, 1) # Creates 2 subplots under 1 column
# Plotting the training accuracy and validation accuracy
ax.plot(model.history.history['accuracy'], color='b', label='Training Accuracy')
ax.plot(model.history.history['val_accuracy'], color='r', label='Validation Accuracy')
plt.legend()
plt.show()
# Defining function for confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
# Print Confusion matrix
fig, ax = plt.subplots(figsize=(4, 4))
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", color="white"
if cm[i, j] > thresh else "black")
plt.tight_layout()
return ax
# Making prediction
y_pred = (model.predict_classes(testX))
y_true = np.argmax(testY, axis=1)
print(y_pred)
print(y_pred.shape)
# Plotting the confusion matrix
confusion_mtx = confusion_matrix(y_true, y_pred)
CLASS_NAMES = [f.name for f in os.scandir(imgPath) if f.is_dir()]
class_names = CLASS_NAMES
print(class_names)
print("ypredn", y_pred)
print("ytrue", y_true)
# Plotting non-normalized confusion matrix
plot_confusion_matrix(y_true, y_pred, classes=class_names, title='Confusion matrix, without normalization')
plt.show()
# Plotting normalized confusion matrix
# plot_confusion_matrix(y_true, y_pred, classes=class_names, normalize=True, title='Normalized confusion matrix')
# plt.show()
# Classification Metrics
acc_score = accuracy_score(y_true, y_pred)
print('nntt Accuracy Score: ', str(round((100 * acc_score), 2)), '%')
prec_score = precision_score(y_true, y_pred, average='macro')
print(' Precision Score Macro: ', str(round((100 * prec_score), 2)), '%')
prec_score = precision_score(y_true, y_pred, average='micro')
print(' Precision Score Micro: ', str(round((100 * prec_score), 2)), '%')
prec_score = precision_score(y_true, y_pred, average='weighted')
print('Precision Score Weighted: ', str(round((100 * prec_score), 2)), '%')
rec_score = recall_score(y_true, y_pred, average='macro')
print('tttRecall Macro: ', str(round((100 * rec_score), 2)), '%')
rec_score = recall_score(y_true, y_pred, average='micro')
print('tttRecall Micro: ', str(round((100 * rec_score), 2)), '%')
rec_score = recall_score(y_true, y_pred, average='weighted')
print('tt Recall Weighted: ', str(round((100 * rec_score), 2)), '%')
f_score = f1_score(y_true, y_pred, average='macro')
print('tt F1 Score Macro: ', str(round((100 * f_score), 2)), '%')
f_score = f1_score(y_true, y_pred, average='micro')
print('tt F1 Score Micro: ', str(round((100 * f_score), 2)), '%')
f_score = f1_score(y_true, y_pred, average='weighted')
print('t F1 Score Weighted: ', str(round((100 * f_score), 2)), '%')
# Run Command: python.exe GoogLeNet5.py --model output/minigooglenet_cifar10.hdf5 --output output
我能够通过做以下更改来解决我的问题。
来自:
# Making prediction
y_pred = (model.predict_classes(testX))
y_true = np.argmax(testY, axis=1)
print(y_pred)
print(y_pred.shape)
:
# Making prediction
testX_arg = np.argmax(testY, axis=1)
y_pred = np.argmax(model.predict(testX), axis=1)
y_true = np.argmax(testY, axis=1)
print(y_pred)
print(y_pred.shape)