我有这样的df1
id name level personality type weakness atk def hp stage
0 53.0 Persian 40.0 mild normal fighting 104.0 116.0 NaN 2.0
1 126.0 Magmar 44.0 docile NaN water 96.0 83.0 153.0 1.0
2 57.0 Primeape 9.0 lonely fighting flying NaN 66.0 43.0 2.0
3 3.0 Venusaur 44.0 sassy grass fire 136.0 195.0 92.0 3.0
4 11.0 Metapod 4.0 naive grass fire NaN 114.0 NaN 2.0
5 126.0 Magmar 96.0 modest fire water 62.0 114.0 NaN 1.0
6 137.0 Porygon 96.0 relaxed NaN fighting 68.0 50.0 127.0 1.0
7 69.0 Bellsprout 84.0 lonely grass fire NaN NaN NaN 1.0
8 10.0 Caterpie 3.0 serious NaN flying NaN NaN 15.0 1.0
9 12.0 Butterfree 12.0 hasty NaN flying 20.0 NaN NaN 3.0
10 35.0 Clefairy 18.0 impish fairy poison 33.0 NaN NaN 1.0
11 59.0 Arcanine 35.0 gentle fire water 45.0 60.0 80.0 2.0
12 111.0 Rhyhorn 31.0 naughty rock water 40.0 NaN 175.0 1.0
13 136.0 Flareon 75.0 bold NaN water NaN 143.0 NaN 2.0
14 51.0 Dugtrio 82.0 gentle ground water 152.0 161.0 168.0 2.0
15 38.0 Ninetales 5.0 brave fire water NaN 179.0 173.0 2.0
16 102.0 Exeggcute 88.0 rash NaN fire NaN 124.0 NaN 1.0
........
and df2 as
weakness type count
3 fire grass 11
10 water fire 9
0 fighting normal 6
4 flying fighting 3
8 poison fairy 3
6 grass water 1
9 rock fire 1
7 ground electric 1
我想在类型列中使用df2更新NaN值,并在两个dfs中匹配弱点列。例如,在df1的第8行和第9行中,"type"为NaN赋值。我想用df2更新它们匹配df1中的弱点列。所以那些8,9类型的值应该是" fighting "等等。这有点像df2和df1之间的一对多关系。
我试着
df1.update(df2)
和
df1.fillna(df2)
但是他们没有给出期望的输出。如有任何帮助,不胜感激。
您可以从df2创建一个字典,弱点列作为键,类型列作为它们各自的值,然后使用该字典fillna
df1中的类型列使用map
:
m = dict(zip(df2.weakness,df2.type))
df1.type = df1.type.fillna(df1.weakness.map(m))
打印:
>>> df1[['weakness','type']]
weakness type
0 fighting normal
1 water fire
2 flying fighting
3 fire grass
4 fire grass
5 water fire
6 fighting normal
7 fire grass
8 flying fighting
9 flying fighting
10 poison fairy
11 water fire
12 water rock
13 water fire
14 water ground
15 water fire
16 fire grass
-
从
df2
创建一个系列,将weakness
值映射到type
值:mapping = df2.set_index("weakness")["type"]
-
使用此映射映射
df1["weakness"]
来创建默认值:defaults = df1["weakness"].map(mapping)
-
使用默认值作为
fillna
方法的参数:df1["type"] = df1["type"].fillna(defaults)
代码内联
# Merge both dataframes using "weakness" as key
df = pd.merge(df1, df2[['weakness', 'type']],
on="weakness", suffixes=("", "_y"), how="left")
# Replace nans
df['type'].fillna(df['type_y'], inplace=True)
# Drop additional columns resulted from Merge
df.drop(columns=['type_y'])