我有一些文本,我想执行NLP上。为此,我下载了一个预训练的标记器,如下所示:
import transformers as ts
pr_tokenizer = ts.AutoTokenizer.from_pretrained('distilbert-base-uncased', cache_dir='tmp')
然后我用我的数据创建我自己的标记器,像这样:
from tokenizers import Tokenizer
from tokenizers.models import BPE
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
from tokenizers.trainers import BpeTrainer
trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
from tokenizers.pre_tokenizers import Whitespace
tokenizer.pre_tokenizer = Whitespace()
tokenizer.train(['transcripts.raw'], trainer)
现在是我感到困惑的部分…我需要更新预训练标记器(pr_tokenizer
)中的条目,其中它们的键与我的标记器(tokenizer
)中的键相同。我尝试了几种方法,下面是其中的一种:
new_vocab = pr_tokenizer.vocab
v = tokenizer.get_vocab()
for i in v:
if i in new_vocab:
new_vocab[i] = v[i]
那我现在该怎么办呢?我在想这样写:
pr_tokenizer.vocab.update(new_vocab)
或
pr_tokenizer.vocab = new_vocab
既不工作。有人知道这样做的好方法吗?
要做到这一点,您可以从GitHub或HuggingFace网站下载标记器源代码到与您的代码相同的文件夹中,然后在标记器加载之前编辑词汇表:
new_vocab = {}
# Getting the vocabulary entries
for i, row in enumerate(open('./distilbert-base-uncased/vocab.txt', 'r')):
new_vocab[row[:-1]] = i
# your vocabulary entries
v = tokenizer.get_vocab()
# replace common (your code)
for i in v:
if i in new_vocab:
new_vocab[i] = v[i]
with open('./distilbert-base-uncased/vocabb.txt', 'w') as f:
# reversed vocabulary
rev_vocab = {j:i for i,j in zip(new_vocab.keys(), new_vocab.values())}
# adding vocabulary entries to file
for i in range(len(rev_vocab)):
if i not in rev_vocab: continue
f.write(rev_vocab[i] + 'n')
# loading the new tokenizer
pr_tokenizer = ts.AutoTokenizer.from_pretrained('./distilbert-base-uncased')
如果你能在你的pc中找到蒸馏酒文件夹,你可以看到词汇表基本上是一个只包含一列的txt文件。你可以做任何你想做的事。
# i download the model with pasting this line to python terminal (or your main cli)
# git clone https://huggingface.co/distilbert-base-uncased
import os
path= "C:/Users/...../distilbert-base-uncased"
print(os.listdir(path))
# ['.git',
# '.gitattributes',
# 'config.json',
# 'flax_model.msgpack',
# 'pytorch_model.bin',
# 'README.md', 'rust_model.ot',
# 'tf_model.h5',
# 'tokenizer.json',
# 'tokenizer_config.json',
# 'vocab.txt']