Nsight Compute中使用的术语



两个问题:

  1. 根据Nsight Compute,我的内核是计算绑定的。相对于峰值性能,SM%的利用率为74%,内存利用率为47%。然而,当我观察每个管道的利用率百分比时,LSU的利用率远远高于其他管道(75%对10-15%(。这难道不是表示我的内核内存受限吗?如果计算和内存资源的利用率与管道利用率不一致,我不知道如何解释这些术语。

  2. 调度器每4个周期才发布一次,这难道不意味着我的内核有延迟限制吗?人们通常根据计算和内存资源的利用率来定义它。两者之间的关系是什么?

在CC7.5 GPU 上的In-Sight计算

SM%由SM__throughput定义,并且内存%由gpu_compute_Memory_throughtput 定义

sm_throughput是以下度量的最大值:

  • sm__instruction_throughput
    • sm__inst_executed
    • sm__issue_active
    • sm__mio_inst_发布
    • sm__pipe_al_cycles_active
    • sm__inst_executed_pipe_cbu_pred_on_any
    • sm__pipe_fp64_cycles_active
    • sm__pipe_sensor_cycles_active
    • sm__inst_executed_pipe_xu
    • sm__pipe_fma_cycles_active
    • sm__inst_executed_pipe_fp16
    • sm__pipe_shared_cycles_active
    • sm__inst_executed_pipe_uniform
    • sm__instruction_throughput_internal_activity
  • sm__memory_吞吐量
    • idc_request_cycles_active
    • sm__inst_executed_pipe_adu
    • sm__inst_executed_pipe_ipa
    • sm__inst_executed_pipe_lsu
    • sm__inst_executed_pipe_tex
    • sm__mio_pq_read_cycles_active
    • sm__mio_pq_write_cycles_active
    • sm__mio2rf_writeback_active
    • sm__memory_throughput_internal_activity

gpu_compute_memory_fassput是以下指标的最大值:

  • gpu_compute_memory_access_throughput
    • l1tex_data_bank_reads
    • l1tex_data_bank_writes
    • l1tex_data_pipe_lsu_wavefronts
    • l1tex_data_pipe_tex-wavefronts
    • l1tex_f_波前
    • lts_d_atomic_input_cycles_active
    • lts__d_sectors
    • lts__t_sectors
    • lts__t_tag_requests
    • gpu_compute_memory_access_throughput_internal_activity
  • gpu_compute_memory_access_throughput
  • l1x__lsuin_requests
    • l1tex_texin_sm2tex_req_cycles_active
    • l1tex_lsu_writeback_active
    • l1tex_tex_writeback_active
    • l1tex__m_l1tex2xbar_req_cycles_active
    • l1x__m_xbar2l1x_read_sectors
    • lts_lts2x_bar_cycles_active
    • lts_xbar2lts_cycles_active
    • lts__d_sectors_fill_device
    • lts__d_sectors_fill_ysmem
    • gpu__dram吞吐量
    • gpu_compute_memory_request_throughput_internal_activity

在您的情况下,限制器是sm__inst_executed_pipe_lsu,这是一个指令吞吐量。如果您查看章节/SpeedOfLight.py延迟绑定被定义为同时具有sm__throughput和gpu_compute_memory_sthrouhgput<60%。

一些指令流水线的吞吐量较低,如fp64、xu和lsu(随芯片而异(。管道利用率是sm__throughput的一部分。为了提高性能,选项有:

  1. 减少对超额订阅管道的指令,或者
  2. 发布不同类型的说明以使用空的发布周期

生成故障

截至Nsight Compute 2020.1,没有一个简单的命令行可以在不运行分析会话的情况下生成列表。现在,您可以使用breakdown:<throughput metric>avg.pct_of_peak_sustained.elapsed收集一个吞吐量度量,并解析输出以获得子度量名称。

例如:

ncu.exe --csv --metrics breakdown:sm__throughput.avg.pct_of_peak_sustained_elapsed --details-all -c 1 cuda_application.exe

生成:

"ID","Process ID","Process Name","Host Name","Kernel Name","Kernel Time","Context","Stream","Section Name","Metric Name","Metric Unit","Metric Value"
"0","33396","cuda_application.exe","127.0.0.1","kernel()","2020-Aug-20 13:26:26","1","7","Command line profiler metrics","gpu__dram_throughput.avg.pct_of_peak_sustained_elapsed","%","0.38"
"0","33396","cuda_application.exe","127.0.0.1","kernel()","2020-Aug-20 13:26:26","1","7","Command line profiler metrics","l1tex__data_bank_reads.avg.pct_of_peak_sustained_elapsed","%","0.05"
"0","33396","cuda_application.exe","127.0.0.1","kernel()","2020-Aug-20 13:26:26","1","7","Command line profiler metrics","l1tex__data_bank_writes.avg.pct_of_peak_sustained_elapsed","%","0.05"
...

关键字breakdown可以在Nsight Compute部分文件中用于扩展吞吐量度量。这用于SpeedOfLight.部分。

相关内容

  • 没有找到相关文章

最新更新