使用OpenCV的输入图像错误中的通道数无效


cv2.error: OpenCV(4.2.0) c:projectsopencv
pythonopencvmodulesimgprocsrccolor.simd_helpers.hpp:92: error:
(-2:Unspecified error) in function '__cdecl cv::impl::`anonymous- 

命名空间'::CvtHelper<struct cv::impl::`匿名
命名空间'::设置<3,4,-1>,struct-cv::impl::A0xe227985e::设置<1,-1,-1>,结构cv::impl::A0xe227985e::设置<0,2,5>,2>:CvtHelper(const类cv::_InputArray&,const类cv::_OutputArray&,int(>输入图像中的通道数无效:>'VScn::包含(scn('>哪里>'scn'是1

img = cv2.cvtColor(images, cv2.COLOR_BGR2GRAY) 

这行给我错误

大家好,我是opencv的新手,现在我正在做图像分类项目

我的完整代码如下

from flask import Flask, request
from flask_restful import Api, Resource
import sys, os
from myconstants1 import path_logs, path_resources
from logConfig1 import setup_logger
import pathlib, pycountry, cv2, pickle, random, PIL, sys
from pathlib import Path 
import pathlib as pl
import numpy as np
from sklearn.model_selection import train_test_split
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.utils.np_utils import to_categorical
from keras.layers import Flatten, Dropout
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image, ImageOps
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logger = setup_logger('/modelTrain', path_logs+'/modelTrain.log')
app = Flask(__name__)
api = Api(app)
path = sys.path
path = Path(__file__).parent
print("path2", path)
class HandleRequest5(Resource):
y_validation = ""
x_test = ""
x_validation  = ""
x_train = ""

@classmethod
def post(cls, json): 

data = request.get_json()

json = ({
"Status": "failed",
"message": "ALL fields are mandatory"
})

try:
country_code = data["country_code"].upper()  
batch_size = data["batch_size"]
step_per_epoch_val = data["step_per_epoch_val"]
epoch = data["epoch"]
except KeyError:
print(json)
logger.debug(json)
return(json)

try:
country = pycountry.countries.get(alpha_3 = data["country_code"].upper()).name.lower()
print("country1", country)
logger.debug(f'country1 : {country}')
country = country.split()
country =("_".join(country))
print("country : ", country)
logger.debug(f"country : {country}")
alpha_2 = pycountry.countries.get(alpha_3 = data["country_code"].upper()).alpha_2
print("alpha_2 : ", alpha_2)
logger.debug(f"alpha_2 : {alpha_2}")
except AttributeError:                
jsonify1 = {
"status": "invalid",
"message" : "Invalid country_code"
}
print("invalid country_code")

logger.debug({
"status": "invalid",
"message" : "Invalid country_code"
})
return jsonify1

#   path = rf'{path}/{country}'  # folder with all class folders

labelFile = rf'{path_resources}/{country}/labels.csv'         
imageDimensions = (99, 200, 3)
print("imageDimensions:", imageDimensions)
testRatio = 0.2               # if 1000 images split will 200 for testing
validationRatio = 0.2  
print("line 91 is going to execute")
cls.importImages( cls,testRatio , validationRatio , imageDimensions  ,country , labelFile)   

def importImages(cls, testRatio, validationRatio, imageDimensions, country, labelFile):
count = 0
images = []
classNo = []

p = pl.Path(f'{path_resources}/{country}')                    
mylist = [x for x in p.iterdir() if x.is_dir()]
print("mylist1", mylist)
print("total classs detected :", len(mylist))
noofClasses = len(mylist)
print("noofClasses:", noofClasses)
print("importing classes...")

for x in range(0, len(mylist)):
myPicList = os.listdir(os.path.join(str(path_resources), str(country)+'//'+str(count))) 
print("myPicList1:", myPicList)
#for y in myPicList:
#print(os.path.join(path, str(count), y))
#curImg = cv2.imread((str(path_resources)+"/"+str(count)+"//"+y))

for y in myPicList:
print(os.path.join(path_resources, country, str(count)+y))
curImg = cv2.imread(f"{path_resources}{country}/{str(count)}//{y}")                                                      
images.append(curImg)
classNo.append(count)
print(count, end = " ")
count+=1
print(" ")
images = np.array(images, dtype=np.uint8) 
images = np.array(images)
print("line 128")
print(images.shape)
#images = np.append(images,4)
#images = images.append((Image.fromarray(images, dtype=np.float32).convert('RGB') / 255.))
#        image = Image.fromarray(images)
#images = images.convert("RGB")
classNo = np.array(classNo)        

cls.splitData(cls,images, classNo, testRatio, validationRatio , imageDimensions, labelFile, noofClasses)
return images, classNo, noofClasses

# split data #
def splitData(cls, images, classNo, testRatio, validationRatio , imageDimensions, labelFile, noofClasses):
x_train, x_test, y_train, y_test = train_test_split(images, classNo, test_size = testRatio)
x_train, x_validation, y_train, y_validation = train_test_split(x_train, y_train , test_size = validationRatio)

# to check if no of images matches to number of labels for each data set
print("data shapes...")
print("train : ", end = "");print(x_train.shape, y_train.shape)
print("validation :", end = ""); print(x_validation.shape, y_validation.shape) 
print("test :", end = ""); print(x_test.shape, y_test.shape)        

assert (x_train.shape[0] == y_train.shape[0]),  "the no of images is not equal to the no of labels in training set"
assert (x_validation.shape[0] == y_validation.shape[0]), "the no of images is not equal to the no of labels in validation set"
assert (x_test.shape[0] == y_test.shape[0]), "the no of images is not equal to the no of labels in test set"
#print(x_train.shape)
assert (x_train.shape[1:]  == (imageDimensions)),  "the dimension of training images are wrong"
assert (x_validation.shape[1:] == (imageDimensions)), "the dimension of validation images are wrong"
assert (x_test.shape[1:] == (imageDimensions)), "the dimension of test images are wrong"        

data = pd.read_csv(labelFile) 

cls.grayscale(cls, images, x_train, x_validation, x_test, y_train, y_validation, y_test )

return images, x_train, x_validation, x_test, y_train, y_validation, y_test
# preprocessing the image #
def grayscale(cls,images, x_train, x_validation, x_test, y_train, y_validation, y_test):
#images = ImageOps.grayscale(images)
images = cv2.cvtColor(images, cv2.COLOR_BGR2GRAY)
cls.equalize(images)
return images

def equalize(images):
img = cv2.equalizeHist(images)       
cls.preprocessing(img, grayscale, equalize)
return img

def preprocessing(cls, img, grayscale, equalize, x_train, x_validation, x_test, y_train, y_test, y_validation):
img = grayscale(img)  #convert to grayscale
img = equalize(img)   #standardize the lightining of an image
img = img/255         # to normaize value between 0 and 1 instead of 0 to 255
return img , x_train, x_validation, x_test, y_train, y_test, y_validation
x_train = np.array(list(map(preprocessing, x_train)))  # to iterate and preprocess all images
x_validation = np.array(list(map(preprocessing, x_validation)))
x_test = np.array(list(map(preprocessing, x_test)))
#cv2.imshow("grayscale images", x_train[random.randint(0, len(x_train)-1)]) #to check if training is done properly

# add a depth of 1 #
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
x_validation = x_validation.reshape(x_validation .shape[0], x_validation .shape[1], x_validation .shape[2], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)

def dataAugmentation(cls, x_train, y_train, noofClasses):
# augmentation of images to make it more generic #
dataGen = ImageDataGenerator(width_shift_range = 0.1, 
height_shift_range  = 0.1,
zoom_range = 0.2,
shear_range = 0.1,
rotation_range = 10)
dataGen.fit(x_train)
batches = dataGen.flow(x_train, y_train, batch_size = 20)
x_batch, y_batch = next(batches)

# to show augmentated image sample 
#fig, axs = plt.subplots(24, 2, figsize = (20, 5))
#fig.tight_layout()
#print(axs)
#print("axs0:",axs[0])
#print("axs1:",axs[1])
#for i in range(10):
#axs[i].imshow(x_batch[i].reshape(imageDimensions[0], imageDimensions[1]))
#axs[0][1].imshow(x_batch[i].reshape(imageDimensions[0], imageDimensions[1]))
#axs[i].axis("off")
#axs[0][1].axis('off')
#plt.show()
y_train = to_categorical(y_train, noofClasses) 
y_validation = to_categorical(y_validation, noofClasses) 
y_test = to_categorical(y_test, noofClasses) 
cls.splitData(y_validations)        
cls.myModel(noofClasses)
# convolution neural network #
def myModel(cls, noofClasses, country):
no_of_filters = 60 
size_of_filter = (5,5)  #this is kernal that move around the image to get the features 

size_of_filter2 = (3,3) 
size_of_pool = (2,2)
no_of_nodes = 200

model = Sequential()
model.add(Conv2D(no_of_filters, size_of_filter, input_shape = (imageDimensions[0], imageDimensions[1], 1), activation = "relu"))
model.add(Conv2D(no_of_filters, size_of_filter, activation = "relu"))
model.add(MaxPooling2D(pool_size = size_of_pool))

model.add(Conv2D(no_of_filters//2, size_of_filter2, activation = "relu"))
model.add(Conv2D(no_of_filters//2, size_of_filter2, activation = "relu"))
model.add(Dropout(0.5))

model.add(Flatten())
model.add(Dense(no_of_nodes, activation = "relu"))
model.add(Dropout(0.5))


#  model.add(Flatten())
model.add(Dense(noofClasses, activation = "softmax"))

# compile model #
model.compile(Adam(lr = 0.001), loss = "categorical_crossentropy",  metrics = ["accuracy"])
return model    

# train #
model = myModel()
print(model.summary())
history = model.fit_generator  (dataGen.flow(x_train, y_train, batch_size = batch_size_val), steps_per_epoch = steps_per_epoch_val, epochs = epoch_val, validation_data = (x_train, y_train))  

# plot #
plt.figure(1)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.legend(["training", "validation"])
plt.title("loss")
plt.xlabel("epoch")
plt.figure(2)
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.legend(["training", "accuracy"])
plt.title("accuracy")
plt.xlabel("epoch")
#plt.show()

score = model.evaluate(x_test, y_test, verbose = 0)
print("test score: ", score[0])
print("test accuracy: ", score[1])
###############################################################
#store the model as pickle object #
#save_path = rf'{path}/{country}'
pickle_out = open(rf"{path_resources}/{country}.p", "wb")
#model = model.save(rf'{country}_{epoch_val}.h5')
pickle.dump(model, pickle_out)
pickle_out.close()
print(rf"{country}_model saved...")
cv2.waitKey(0)        

api.add_resource(HandleRequest5, '/modelTrain')
if __name__ == ' __main__ ':
app.run(debug = False)

正如注释中所建议的,有两种方法可以做到这一点。您可以迭代每个图像并运行cv2.cvtColor方法,也可以使用该公式直接从RGB转换为灰度。OpenCV使用SMPTE Rec.601转换公式,即:

Y = 0.299*R + 0.587*G + 0.114*B

让我们介绍这两种方法。

方法#1

创建一个新的3D阵列336 x 99 x 200,然后迭代4D阵列中的每个图像,转换并将其设置到输出中的相应位置。

images_gray = np.zeros(images.shape[:-1], dtype=images.dtype)
for i, img in enumerate(images):
images_gray[i] = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

方法#2-直接使用转换公式

我认为这种方法是最有效的,主要是因为我建议你做的是计算矢量化的:

coeffs = np.array([0.114, 0.587, 0.229])
images_gray = (images.astype(np.float) * coeffs).sum(axis=-1)
images_gray = images_gray.astype(images.dtype)

需要注意的两件事:第一件事是,由于OpenCV读取BGR格式的图像,每个RGB值的权重都会反转。第二个是,我暂时将图像转换为浮点精度,这样由于浮点系数,您就可以保持尽可能高的精度。然后,我们将结果输出转换回与输入图像相同的精度。最后,上面的代码将为每个图像的每个像素做的是,我们将每个颜色像素乘以转换公式中的权重,然后对这些值求和。上面的代码将以无循环的矢量化方式完成。

关于图像分类的次要注意事项

我在上面的评论线程中注意到,您正在使用它来执行图像分类。如果你计划使用深度学习框架,你通常需要维护一个单一维度来反映频道维度,这样你就可以在网络的前向通道中正确地进行广播。换句话说,您必须有一个336 x 99 x 200 x 1数组。对于方法#1,只需声明输出数组具有四个维度,但在循环中,您需要使用np.newaxis在数组末尾添加一个singleton维度。

images_gray = np.zeros(images.shape, dtype=images.dtype)
for i, img in enumerate(images):
images_gray[i] = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[..., np.newaxis]

对于方法#2,您可以在sum调用中添加keepdims=True

coeffs = np.array([0.114, 0.587, 0.229])
images_gray = (images.astype(np.float) * coeffs).sum(axis=-1, keepdims=True)
images_gray = images_gray.astype(images.dtype)

相关内容

  • 没有找到相关文章

最新更新