我使用tf.keras.preprocessing.image_dataset_from_directory
来获得BatchDataset
,其中数据集有10个类。
我正试图将这个BatchDataset
与KerasVGG16
(docs)网络集成。来自文档:
注意:每个Keras应用程序期望一种特定类型的输入预处理。对于VGG16,在将它们传递给模型之前,对输入调用
tf.keras.applications.vgg16.preprocess_input
。
然而,我正在努力让这个preprocess_input
与BatchDataset
一起工作。你能帮我弄清楚如何连接这两个点吗?
请看下面的代码:
train_ds = tf.keras.preprocessing.image_dataset_from_directory(train_data_dir, image_size=(224, 224))
train_ds = tf.keras.applications.vgg16.preprocess_input(train_ds)
这将抛出TypeError: 'BatchDataset' object is not subscriptable
:
Traceback (most recent call last):
...
File "/path/to/venv/lib/python3.10/site-packages/keras/applications/vgg16.py", line 232, in preprocess_input
return imagenet_utils.preprocess_input(
File "/path/to/venv/lib/python3.10/site-packages/keras/applications/imagenet_utils.py", line 117, in preprocess_input
return _preprocess_symbolic_input(
File "/path/to/venv/lib/python3.10/site-packages/keras/applications/imagenet_utils.py", line 278, in _preprocess_symbolic_input
x = x[..., ::-1]
TypeError: 'BatchDataset' object is not subscriptable
From TypeError: 'DatasetV1Adapter' object is not subscriptable (From BatchDataset not subscriptable当尝试将Python字典格式化为表时)建议使用:
train_ds = tf.keras.applications.vgg16.preprocess_input(
list(train_ds.as_numpy_iterator())
)
然而,这也失败了:
Traceback (most recent call last):
...
File "/path/to/venv/lib/python3.10/site-packages/keras/applications/vgg16.py", line 232, in preprocess_input
return imagenet_utils.preprocess_input(
File "/path/to/venv/lib/python3.10/site-packages/keras/applications/imagenet_utils.py", line 117, in preprocess_input
return _preprocess_symbolic_input(
File "/path/to/venv/lib/python3.10/site-packages/keras/applications/imagenet_utils.py", line 278, in _preprocess_symbolic_input
x = x[..., ::-1]
TypeError: list indices must be integers or slices, not tuple
这些都是使用Python==3.10.3
和tensorflow==2.8.0
。
我怎样才能使它工作?提前谢谢你。
好吧,我明白了。我需要通过tf.Tensor
,而不是tf.data.Dataset
。可以通过迭代Dataset
得到Tensor
。
这可以通过以下几种方式完成:
train_ds = tf.keras.preprocessing.image_dataset_from_directory(...)
# Option 1
batch_images = next(iter(train_ds))[0]
preprocessed_images = tf.keras.applications.vgg16.preprocess_input(batch_images)
# Option 2:
for batch_images, batch_labels in train_ds:
preprocessed_images = tf.keras.applications.vgg16.preprocess_input(batch_images)
如果将选项2转换为生成器,则可以直接传递到下游model.fit
。干杯!