Python不保存极坐标条形图



我一直在尝试导出一个图,以便我可以在演示文稿中使用它,但不知出于什么原因,python只导出一个白色的正方形。我可以使用Spyder内置的plot选项卡保存情节,但我希望稍后使用代码进一步操作它。Spyder保存图片是没有问题的。这就是图像的样子。我看过有类似问题的人,但我找到的解决方案都不起作用。提前为长列表道歉,它们来自一个文本文件,我不能分享,我需要分享情节信息,这样你就可以看到我在处理什么。

import matplotlib.pyplot as plt
import numpy as np
r = [500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210, 500, 2195, 6374,
7622, 8708, 10300, 12000, 17062, 48210, 500, 2195, 6374, 7622, 8708,
10300, 12000, 17062, 48210, 500, 2195, 6374, 7622, 8708, 10300, 12000,
17062, 48210, 500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210,
500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210, 500, 2195, 6374,
7622, 8708, 10300, 12000, 17062, 48210, 500, 2195, 6374, 7622, 8708,
10300, 12000, 17062, 48210, 500, 2195, 6374, 7622, 8708, 10300, 12000,
17062, 48210, 500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210,
500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210, 500, 2195, 6374,
7622, 8708, 10300, 12000, 17062, 48210, 500, 2195, 6374, 7622, 8708,
10300, 12000, 17062, 48210, 500, 2195, 6374, 7622, 8708, 10300, 12000,
17062, 48210, 500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210,
500, 2195, 6374, 7622, 8708, 10300, 12000, 17062, 48210]
theta = [1.5707963267948966, 1.5707963267948966, 1.5707963267948966,
1.5707963267948966, 1.5707963267948966, 1.5707963267948966,
1.5707963267948966, 1.5707963267948966, 1.5707963267948966,
1.1780972450961724, 1.1780972450961724, 1.1780972450961724,
1.1780972450961724, 1.1780972450961724, 1.1780972450961724,
1.1780972450961724, 1.1780972450961724, 1.1780972450961724,
0.7853981633974483, 0.7853981633974483, 0.7853981633974483,
0.7853981633974483, 0.7853981633974483, 0.7853981633974483,
0.7853981633974483, 0.7853981633974483, 0.7853981633974483,
0.39269908169872414, 0.39269908169872414, 0.39269908169872414,
0.39269908169872414, 0.39269908169872414, 0.39269908169872414,
0.39269908169872414, 0.39269908169872414, 0.39269908169872414,
0, 0, 0, 0, 0, 0, 0, 0, 0, 5.890486225480862, 5.890486225480862,
5.890486225480862, 5.890486225480862, 5.890486225480862,
5.890486225480862, 5.890486225480862, 5.890486225480862,
5.890486225480862, 5.497787143782138, 5.497787143782138,
5.497787143782138, 5.497787143782138, 5.497787143782138,
5.497787143782138, 5.497787143782138, 5.497787143782138,
5.497787143782138, 5.105088062083414, 5.105088062083414,
5.105088062083414, 5.105088062083414, 5.105088062083414,
5.105088062083414, 5.105088062083414, 5.105088062083414,
5.105088062083414, 4.71238898038469, 4.71238898038469,
4.71238898038469, 4.71238898038469, 4.71238898038469,
4.71238898038469, 4.71238898038469, 4.71238898038469,
4.71238898038469, 4.319689898685965, 4.319689898685965,
4.319689898685965, 4.319689898685965, 4.319689898685965,
4.319689898685965, 4.319689898685965, 4.319689898685965,
4.319689898685965, 3.9269908169872414, 3.9269908169872414,
3.9269908169872414, 3.9269908169872414, 3.9269908169872414,
3.9269908169872414, 3.9269908169872414, 3.9269908169872414,
3.9269908169872414, 3.5342917352885173, 3.5342917352885173,
3.5342917352885173, 3.5342917352885173, 3.5342917352885173,
3.5342917352885173, 3.5342917352885173, 3.5342917352885173,
3.5342917352885173, 3.141592653589793, 3.141592653589793,
3.141592653589793, 3.141592653589793, 3.141592653589793,
3.141592653589793, 3.141592653589793, 3.141592653589793,
3.141592653589793, 2.748893571891069, 2.748893571891069,
2.748893571891069, 2.748893571891069, 2.748893571891069,
2.748893571891069, 2.748893571891069, 2.748893571891069,
2.748893571891069, 2.356194490192345, 2.356194490192345,
2.356194490192345, 2.356194490192345, 2.356194490192345,
2.356194490192345, 2.356194490192345, 2.356194490192345,
2.356194490192345, 1.9634954084936207, 1.9634954084936207,
1.9634954084936207, 1.9634954084936207, 1.9634954084936207,
1.9634954084936207, 1.9634954084936207, 1.9634954084936207,
1.9634954084936207]
dist_dict = {500: 0, 2195: 500, 6374: 2195, 7622: 6374, 8708: 7622,
10300: 8708, 12000: 10300, 17062: 12000, 48210: 17062}
color = [[0.4337593822888133, 1, 0, 0.5], [0, 1, 0.3589234543485882, 0.5],
[0, 1, 0.8732349039106471, 0.5], [0, 1, 0.950744292378161, 0.5],
[0, 0.987542480132762, 1, 0.5], [0, 0.9105326234228976, 1, 0.5],
[0, 0.8486243615317225, 1, 0.5], [0, 0.7065353470072946, 1, 0.5],
[0, 0.2881460605850948, 1, 0.5], [0.24467076265135201, 1, 0, 0.5],
[0, 1, 0.5520373881065379, 0.5], [0, 0.9345411986441171, 1, 0.5],
[0, 0.8561417738638891, 1, 0.5], [0, 0.7992651938940958, 1, 0.5],
[0, 0.7183087259776617, 1, 0.5], [0, 0.654421569718946, 1, 0.5],
[0, 0.5134214132493449, 1, 0.5], [0, 0.10661126076259698, 1, 0.5],
[0.14315279896261757, 1, 0, 0.5], [0, 1, 0.6570024312441916, 0.5],
[0, 0.8166006266245653, 1, 0.5], [0, 0.7406008868771122, 1, 0.5],
[0, 0.6815654227479401, 1, 0.5], [0, 0.6086875140738033, 1, 0.5],
[0, 0.5349442580597802, 1, 0.5], [0, 0.402153983720543, 1, 0.5],
[0, 0.0, 1, 0.5], [0.20792745942162982, 1, 0, 0.5],
[0, 1, 0.5873911232658962, 0.5], [0, 0.8977978954143955, 1, 0.5],
[0, 0.8166006266245653, 1, 0.5], [0, 0.7614057624040139, 1, 0.5],
[0, 0.6815654227479401, 1, 0.5], [0, 0.6246888427781467, 1, 0.5],
[0, 0.4903028743408392, 1, 0.5], [0, 0.08095646791643404, 1, 0.5],
[0.3000997413414246, 1, 0, 0.5], [0, 1, 0.5007818163553039, 0.5],
[0, 0.9725656433705228, 1, 0.5], [0, 0.8912301261778117, 1, 0.5],
[0, 0.8249199867402587, 1, 0.5], [0, 0.7511767307262356, 1, 0.5],
[0, 0.6943001507564422, 1, 0.5], [0, 0.5550775347998512, 1, 0.5],
[0, 0.1523453164077397, 1, 0.5], [0.42415993208808533, 1, 0, 0.5],
[0, 1, 0.3589234543485882, 0.5], [0, 1, 0.8732349039106471, 0.5],
[0, 1, 0.9547696064986495, 0.5], [0, 0.987542480132762, 1, 0.5],
[0, 0.9105326234228976, 1, 0.5], [0, 0.8486243615317225, 1, 0.5],
[0, 0.7065353470072946, 1, 0.5], [0, 0.3102799878945453, 1, 0.5],
[0.5931152749854753, 1, 0, 0.5], [0, 1, 0.1912797777816162, 0.5],
[0, 1, 0.6898704359927648, 0.5], [0, 1, 0.7682698607729934, 0.5],
[0, 1, 0.8435021769698476, 0.5], [0, 1, 0.90610290865922, 0.5],
[0, 1, 0.9671669007089791, 0.5], [0, 0.8977978954143955, 1, 0.5],
[0, 0.4903028743408392, 1, 0.5], [0.66834759118233, 1, 0, 0.5],
[0, 1, 0.09804959796319213, 0.5], [0, 1, 0.5873911232658962, 0.5],
[0, 1, 0.6570024312441916, 0.5], [0, 1, 0.726613739222487, 0.5],
[0, 1, 0.791388399681499, 0.5], [0, 1, 0.8435021769698476, 0.5],
[0, 1, 0.9800773299420615, 0.5], [0, 0.6399093011974337, 1, 0.5],
[0.7289160191628308, 1, 0, 0.5], [0, 1, 0.04996113479533171, 0.5],
[0, 1, 0.5202855116183245, 0.5], [0, 1, 0.6001258512743981, 0.5],
[0, 1, 0.6570024312441916, 0.5], [0, 1, 0.726613739222487, 0.5],
[0, 1, 0.791388399681499, 0.5], [0, 1, 0.9095885037592779, 0.5],
[0, 0.7183087259776617, 1, 0.5], [0.7948354791304184, 1, 0, 0.5],
[0.028438289984896503, 1, 0, 0.5], [0, 1, 0.4567712872820795, 0.5],
[0, 1, 0.5305145432961027, 0.5], [0, 1, 0.5873911232658962, 0.5],
[0, 1, 0.6570024312441916, 0.5], [0, 1, 0.7077014327924926, 0.5],
[0, 1, 0.8435021769698476, 0.5], [0, 0.7902223138963012, 1, 0.5],
[0.8732349039106468, 1, 0, 0.5], [0.11818287470326316, 1, 0, 0.5],
[0, 1, 0.37115865059944064, 0.5], [0, 1, 0.44866803906695485, 0.5],
[0, 1, 0.5007818163553039, 0.5], [0, 1, 0.5751559270150437, 0.5],
[0, 1, 0.6272697043033921, 0.5], [0, 1, 0.746747015962558, 0.5],
[0, 0.8776646186743244, 1, 0.5], [0.7796150207111321, 1, 0, 0.5],
[0.010607293185169286, 1, 0, 0.5], [0, 1, 0.46509064739777295, 0.5],
[0, 1, 0.541090387145226, 0.5], [0, 1, 0.6001258512743981, 0.5],
[0, 1, 0.673003759948535, 0.5], [0, 1, 0.726613739222487, 0.5],
[0, 1, 0.8435021769698476, 0.5], [0, 0.7809094576670342, 1, 0.5],
[0.7467470159625584, 1, 0, 0.5], [0, 1, 0.02843828998489628, 0.5],
[0, 1, 0.5103812665560317, 0.5], [0, 1, 0.5873911232658962, 0.5],
[0, 1, 0.6417819728249046, 0.5], [0, 1, 0.7077014327924926, 0.5],
[0, 1, 0.7682698607729934, 0.5], [0, 1, 0.8958738769814425, 0.5],
[0, 0.7296538859158003, 1, 0.5], [0.7100037127328362, 1, 0, 0.5],
[0, 1, 0.07307967370383728, 0.5], [0, 1, 0.5633825480446766, 0.5],
[0, 1, 0.6417819728249046, 0.5], [0, 1, 0.6898704359927648, 0.5],
[0, 1, 0.7682698607729934, 0.5], [0, 1, 0.8163583239408536, 0.5],
[0, 1, 0.9547696064986495, 0.5], [0, 0.6682886311521451, 1, 0.5],
[0.7100037127328362, 1, 0, 0.5], [0, 1, 0.07307967370383728, 0.5],
[0, 1, 0.5633825480446766, 0.5], [0, 1, 0.6417819728249046, 0.5],
[0, 1, 0.6898704359927648, 0.5], [0, 1, 0.7682698607729934, 0.5],
[0, 1, 0.8163583239408536, 0.5], [0, 1, 0.9588475405932859, 0.5],
[0, 0.654421569718946, 1, 0.5], [0.6452290522738244, 1, 0, 0.5],
[0, 1, 0.15492617793298513, 0.5], [0, 1, 0.6417819728249046, 0.5],
[0, 1, 0.726613739222487, 0.5], [0, 1, 0.791388399681499, 0.5],
[0, 1, 0.8732349039106471, 0.5], [0, 1, 0.9202852379474438, 0.5],
[0, 0.9345411986441171, 1, 0.5], [0, 0.5349442580597802, 1, 0.5]]
fig = plt.figure(dpi=250, figsize=[10,10])
ax = fig.add_axes([1, 1, 1, 1], polar=True)
for i in range(len(r)):
ax.bar(theta[i], (r[i]-dist_dict[r[i]]), width=np.pi/8,
bottom=dist_dict[r[i]], color=color[i], edgecolor=None)
plt.ylim(0, max(r))
plt.savefig("name")

fig.add_axes第一个参数是rect,其中

rect: sequence of float
The dimensions [left, bottom, width, height] of the new Axes. All quantities are in fractions of figure width and height.

那么,你需要把这行改成,例如,

ax = fig.add_axes([0, 0, 1, 1], polar=True)

来源

相关内容

  • 没有找到相关文章

最新更新