r语言 - 引导嵌套数据列中的统计数据,并以整洁的格式检索结果



我正试图以更整洁的方式做一些引导(我知道如何在基数R中这样做并获得结果,但我想知道如何将所有这些都放入更整洁的管道中)。

首先定义两个函数。一个用于统计引导,另一个用于引导本身:

library(boot)
library(tidyverse)
share <- function(data, i)
{
share_boot <- data[i, ] %>%
summarize(across(everything(), mean)) %>%
pivot_longer(everything()) %>%
summarize(value/sum(value)) %>%
pull()

return(share_boot)
}
boot_results <- function(data, statistic, R)
{
boot_results_function <- boot(data = data,
statistic = statistic,
R = R)

return(boot_results_function)
}

然后我想在一些嵌套数据上引导我的统计数据,我基本上想对每一行进行引导:

# Creating toy data
set.seed(1)
df <- tibble(country = rep(1:3, each = 20),
group = rep(rep(1:2, each = 10), 3),
value1 = runif(60),
value2 = runif(60),
value3 = runif(60))
# Doing the boostrap and retreiving results
df2 <- df %>%
group_by(country, group) %>%
nest(data = -c(country, group)) %>%
rowwise() %>%
mutate(results = list(boot_results(data, share, 5))) %>%
ungroup() %>%
hoist(., results, "t0", "t") %>%
select(-results)

这给了我嵌套的t,t0data列表列。

# A tibble: 6 x 5
country group data              t0        t            
<int> <int> <list>            <list>    <list>       
1       1     1 <tibble [10 x 3]> <dbl [3]> <dbl [5 x 3]>
2       1     2 <tibble [10 x 3]> <dbl [3]> <dbl [5 x 3]>
3       2     1 <tibble [10 x 3]> <dbl [3]> <dbl [5 x 3]>
4       2     2 <tibble [10 x 3]> <dbl [3]> <dbl [5 x 3]>
5       3     1 <tibble [10 x 3]> <dbl [3]> <dbl [5 x 3]>
6       3     2 <tibble [10 x 3]> <dbl [3]> <dbl [5 x 3]>

我现在想做几件事:

  • 稍微延长了这三列,这样每个国家/组就有三行了。
  • data列检索列名。

我可能过于复杂了,但是我被困在最后一步,我不知道如何pivot/unnest列表列。

预期结果:

# A tibble: 18 x 5
country group data_names    t0 t            
<int> <int> <chr>      <dbl> <list>       
1       1     1 value1     0.355 <dbl [5 x 1]>
2       1     1 value2     0.329 <dbl [5 x 1]>
3       1     1 value3     0.315 <dbl [5 x 1]>
4       1     2 value1     0.324 <dbl [5 x 1]>
5       1     2 value2     0.361 <dbl [5 x 1]>
6       1     2 value3     0.315 <dbl [5 x 1]>
7       2     1 value1     0.320 <dbl [5 x 1]>
8       2     1 value2     0.310 <dbl [5 x 1]>
9       2     1 value3     0.371 <dbl [5 x 1]>
10       2     2 value1     0.360 <dbl [5 x 1]>
11       2     2 value2     0.386 <dbl [5 x 1]>
12       2     2 value3     0.254 <dbl [5 x 1]>
13       3     1 value1     0.368 <dbl [5 x 1]>
14       3     1 value2     0.319 <dbl [5 x 1]>
15       3     1 value3     0.314 <dbl [5 x 1]>
16       3     2 value1     0.263 <dbl [5 x 1]>
17       3     2 value2     0.293 <dbl [5 x 1]>
18       3     2 value3     0.443 <dbl [5 x 1]>

使用map提取列名,按列拆分矩阵以创建1列矩阵,并将它们一起unnest

library(tidyverse)
df2 %>%
mutate(data = map(data, names), 
t = map(t, ~map(asplit(.x, 2), matrix, ncol = 1))) %>%
unnest(c(data, t0, t)) 
#   country group data      t0 t            
#     <int> <int> <chr>  <dbl> <list>       
# 1       1     1 value1 0.355 <dbl [5 × 1]>
# 2       1     1 value2 0.329 <dbl [5 × 1]>
# 3       1     1 value3 0.315 <dbl [5 × 1]>
# 4       1     2 value1 0.324 <dbl [5 × 1]>
# 5       1     2 value2 0.361 <dbl [5 × 1]>
# 6       1     2 value3 0.315 <dbl [5 × 1]>
# 7       2     1 value1 0.320 <dbl [5 × 1]>
# 8       2     1 value2 0.310 <dbl [5 × 1]>
# 9       2     1 value3 0.371 <dbl [5 × 1]>
#10       2     2 value1 0.360 <dbl [5 × 1]>
#11       2     2 value2 0.386 <dbl [5 × 1]>
#12       2     2 value3 0.254 <dbl [5 × 1]>
#13       3     1 value1 0.368 <dbl [5 × 1]>
#14       3     1 value2 0.319 <dbl [5 × 1]>
#15       3     1 value3 0.314 <dbl [5 × 1]>
#16       3     2 value1 0.263 <dbl [5 × 1]>
#17       3     2 value2 0.293 <dbl [5 × 1]>
#18       3     2 value3 0.443 <dbl [5 × 1]>

相关内容

  • 没有找到相关文章

最新更新