r语言 - 排除API坐标请求循环



我想找到一个地址列表的坐标。

我使用的数据集可以在这里找到:"https://www.data.gv.at/katalog/dataset/kaufpreissammlung-liegenschaften-wien">

我使用read_csv函数作为"数据"输入了这个。我正在使用tidyverse和jsonlite库。唯一相关的列是" stra;这是街道的名字和"ON"这是街道号码。所有这些都是奥地利维也纳。

我正在使用OpenStreetMap,并按照格式要求格式化了我的地址数据:

data$formatted_address <- paste(ifelse(is.na(data$ON), "", data$ON), "+", tolower(data$Straße), ",+vienna", sep = "")

将这一列中的地址格式化为1+milanweg,+vienna12+granergasse,+vienna。当我手动将其输入到API格式时,一切都解决了,我得到了坐标:https://nominatim.openstreetmap.org/search?q=1+milanweg,+vienna&format=json&polygon=1&addressdetails=1

因为我现在想为我的整行做这个,我使用jsonlite在r中创建请求

data$coordinates <- data.frame(lat = NA, lon = NA)
for (i in 1:nrow(data)) {
result <- try(readLines(paste0("https://nominatim.openstreetmap.org/search?q=", 
URLencode(data$formatted_address[i]), "&format=json&polygon=1&addressdetails=1")), 
silent = TRUE)
if (!inherits(result, "try-error")) {
if (length(result) > 0) {
result <- fromJSON(result)
if (length(result) > 0 && is.list(result[[1]])) {
data$coordinates[i, ] <- c(result[[1]]$lat, result[[1]]$lon)
}
}
}
}

理论上这应该创建完全相同的API请求,然而,lat和lon列总是空的。

我如何修复这个脚本,以创建数据集中每个地址的坐标列表?

数据设置

library(tidyverse) 
library(httr2) 
df <- df %>% 
mutate(
formatted_address = str_c(
if_else(is.na(on), "", on), "+", str_to_lower(strasse), "+vienna"
) %>% str_remove_all(" ")
)
# A tibble: 57,912 × 7
kg_code katastralgemeinde      ez   plz strasse                   on      formatted_address                
<dbl> <chr>               <dbl> <dbl> <chr>                     <chr>   <chr>                            
1    1617 Strebersdorf         1417  1210 Mühlweg                   13      13+mühlweg+vienna                
2    1607 Groß Jedlersdorf II   193  1210 Bahnsteggasse             4       4+bahnsteggasse+vienna           
3    1209 Ober St.Veit         3570  1130 Jennerplatz               34/20   34/20+jennerplatz+vienna         
4    1207 Lainz                 405  1130 Sebastian-Brunner-Gasse   6       6+sebastian-brunner-gasse+vienna 
5    1101 Favoriten            3831  1100 Laxenburger Straße        2C -2 D 2C-2D+laxenburgerstraße+vienna   
6    1101 Favoriten            3827  1100 Laxenburger Straße        2 C     2C+laxenburgerstraße+vienna      
7    1101 Favoriten            3836  1100 hinter Laxenburger Straße 2 C     2C+hinterlaxenburgerstraße+vienna
8    1201 Auhof                 932  1130 Keplingergasse            10      10+keplingergasse+vienna         
9    1213 Speising              135  1130 Speisinger Straße         29      29+speisingerstraße+vienna       
10    1107 Simmering            2357  1100 BATTIGGASSE               44      44+battiggasse+vienna            
# … with 57,902 more rows
# ℹ Use `print(n = ...)` to see more rows

API调用并获取坐标。我收集了与API匹配的显示名称,以及最后的&经度数据。

get_coords <- function(address) {
cat("Getting coordinates", address, "n")
str_c(
"https://nominatim.openstreetmap.org/search?q=",
address,
"&format=json&polygon=1&addressdetails=1"
) %>%
request() %>%
req_perform() %>%
resp_body_json(simplifyVector = TRUE) %>%
as_tibble() %>%
select(api_name = display_name,
lat, lon) %>% 
slice(1)
}
df %>% 
slice_sample(n = 10) %>% 
mutate(coordinates = map(
formatted_address, possibly(get_coords, tibble(
api_name = NA_character_, 
lat = NA_character_, 
lon = NA_character_
))
)) %>% 
unnest(coordinates) 
# A tibble: 10 × 10
kg_code katastralgemeinde      ez   plz strasse               on    formatted_…¹ api_n…² lat   lon  
<dbl> <chr>               <dbl> <dbl> <chr>                 <chr> <chr>        <chr>   <chr> <chr>
1    1651 Aspern               3374  1220 ERLENWEG              8     8+erlenweg+… 8, Erl… 48.2… 16.4…
2    1613 Leopoldau            6617  1210 Oswald-Redlich-Straße 31    31+oswald-r… 31, Os… 48.2… 16.4…
3    1006 Landstraße           2425  1030 HAGENMÜLLERGASSE      45018 45018+hagen… Hagenm… 48.1… 16.4…
4    1101 Favoriten             541  1100 HERNDLGASSE           7     7+herndlgas… 7, Her… 48.1… 16.3…
5    1607 Groß Jedlersdorf II   221  1210 Prager Straße         70    70+pragerst… Prager… 48.2… 16.3…
6    1006 Landstraße           1184  1030 PAULUSGASSE           2     2+paulusgas… 2, Pau… 48.1… 16.3…
7    1654 Eßling               2712  1220 KAUDERSSTRASSE        61    61+kauderss… 61, Ka… 48.2… 16.5…
8    1401 Dornbach             2476  1170 Alszeile              NA    +alszeile+v… Alszei… 48.2… 16.2…
9    1654 Eßling                745  1220 Kirschenallee         19    19+kirschen… 19, Ki… 48.2… 16.5…
10    1204 Hadersdorf           3139  1140 MITTLERE STRASSE      NA    +mittlerest… Mittle… 48.2… 16.1…
# … with abbreviated variable names ¹​formatted_address, ²​api_name

相关内容

  • 没有找到相关文章

最新更新